BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

347 related articles for article (PubMed ID: 19441925)

  • 1. Patents related to therapeutic activation of K(ATP) and K(2P) potassium channels for neuroprotection: ischemic/hypoxic/anoxic injury and general anesthetics.
    Judge SI; Smith PJ
    Expert Opin Ther Pat; 2009 Apr; 19(4):433-60. PubMed ID: 19441925
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The neuronal background K2P channels: focus on TREK1.
    Honoré E
    Nat Rev Neurosci; 2007 Apr; 8(4):251-61. PubMed ID: 17375039
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression and localization of two-pore domain K(+) channels in bovine germ cells.
    Hur CG; Choe C; Kim GT; Cho SK; Park JY; Hong SG; Han J; Kang D
    Reproduction; 2009 Feb; 137(2):237-44. PubMed ID: 18987255
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alpha-linolenic acid and riluzole treatment confer cerebral protection and improve survival after focal brain ischemia.
    Heurteaux C; Laigle C; Blondeau N; Jarretou G; Lazdunski M
    Neuroscience; 2006; 137(1):241-51. PubMed ID: 16289892
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protective effects of TASK-3 (KCNK9) and related 2P K channels during cellular stress.
    Liu C; Cotten JF; Schuyler JA; Fahlman CS; Au JD; Bickler PE; Yost CS
    Brain Res; 2005 Jan; 1031(2):164-73. PubMed ID: 15649441
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amide local anesthetics potently inhibit the human tandem pore domain background K+ channel TASK-2 (KCNK5).
    Kindler CH; Paul M; Zou H; Liu C; Winegar BD; Gray AT; Yost CS
    J Pharmacol Exp Ther; 2003 Jul; 306(1):84-92. PubMed ID: 12660311
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Iptakalim protects against hypoxic brain injury through multiple pathways associated with ATP-sensitive potassium channels.
    Zhu HL; Luo WQ; Wang H
    Neuroscience; 2008 Dec; 157(4):884-94. PubMed ID: 18951957
    [TBL] [Abstract][Full Text] [Related]  

  • 8. K(+) efflux through two-pore domain K(+) channels is required for mouse embryonic development.
    Hur CG; Kim EJ; Cho SK; Cho YW; Yoon SY; Tak HM; Kim CW; Choe C; Han J; Kang D
    Reproduction; 2012 May; 143(5):625-36. PubMed ID: 22419831
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TREK-1, a K+ channel involved in neuroprotection and general anesthesia.
    Heurteaux C; Guy N; Laigle C; Blondeau N; Duprat F; Mazzuca M; Lang-Lazdunski L; Widmann C; Zanzouri M; Romey G; Lazdunski M
    EMBO J; 2004 Jul; 23(13):2684-95. PubMed ID: 15175651
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The TREK K2P channels and their role in general anaesthesia and neuroprotection.
    Franks NP; Honoré E
    Trends Pharmacol Sci; 2004 Nov; 25(11):601-8. PubMed ID: 15491783
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neuronal K(ATP) channels mediate hypoxic preconditioning and reduce subsequent neonatal hypoxic-ischemic brain injury.
    Sun HS; Xu B; Chen W; Xiao A; Turlova E; Alibraham A; Barszczyk A; Bae CY; Quan Y; Liu B; Pei L; Sun CL; Deurloo M; Feng ZP
    Exp Neurol; 2015 Jan; 263():161-71. PubMed ID: 25448006
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in expression of some two-pore domain potassium channel genes (KCNK) in selected brain regions of developing mice.
    Aller MI; Wisden W
    Neuroscience; 2008 Feb; 151(4):1154-72. PubMed ID: 18222039
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TREK-1 K(+) channels in the cardiovascular system: their significance and potential as a therapeutic target.
    Goonetilleke L; Quayle J
    Cardiovasc Ther; 2012 Feb; 30(1):e23-9. PubMed ID: 20946320
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Syntaxin-1A inhibition of P-1075, cromakalim, and diazoxide actions on mouse cardiac ATP-sensitive potassium channel.
    Ng B; Kang Y; Xie H; Sun H; Gaisano HY
    Cardiovasc Res; 2008 Dec; 80(3):365-74. PubMed ID: 18703534
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The blockade of K(+)-ATP channels has neuroprotective effects in an in vitro model of brain ischemia.
    Nisticò R; Piccirilli S; Sebastianelli L; Nisticò G; Bernardi G; Mercuri NB
    Int Rev Neurobiol; 2007; 82():383-95. PubMed ID: 17678973
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein complex analysis of native brain potassium channels by proteomics.
    Sandoz G; Lesage F
    Methods Mol Biol; 2008; 491():113-23. PubMed ID: 18998088
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potassium channels and pain: present realities and future opportunities.
    Ocaña M; Cendán CM; Cobos EJ; Entrena JM; Baeyens JM
    Eur J Pharmacol; 2004 Oct; 500(1-3):203-19. PubMed ID: 15464034
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ATP-dependent potassium channel blockade strengthens microglial neuroprotection after hypoxia-ischemia in rats.
    Ortega FJ; Gimeno-Bayon J; Espinosa-Parrilla JF; Carrasco JL; Batlle M; Pugliese M; Mahy N; Rodríguez MJ
    Exp Neurol; 2012 May; 235(1):282-96. PubMed ID: 22387180
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potassium channel blockers and openers as CNS neurologic therapeutic agents.
    Judge SI; Smith PJ; Stewart PE; Bever CT
    Recent Pat CNS Drug Discov; 2007 Nov; 2(3):200-28. PubMed ID: 18221232
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression of thermosensitive two-pore domain K+ channels in human keratinocytes cell line HaCaT cells.
    Kang D; Kim SH; Hwang EM; Kwon OS; Yang HY; Kim ES; Choi TH; Park JY; Hong SG; Han J
    Exp Dermatol; 2007 Dec; 16(12):1016-22. PubMed ID: 18031461
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.