BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 19441988)

  • 1. The effect of bone fragment size and cerebrospinal fluid on spinal cord deformation during trauma: an ex vivo study.
    Persson C; McLure SW; Summers J; Hall RM
    J Neurosurg Spine; 2009 Apr; 10(4):315-23. PubMed ID: 19441988
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of cerebrospinal fluid on the biomechanics of spinal cord: an ex vivo bovine model using bovine and physical surrogate spinal cord.
    Jones CF; Kroeker SG; Cripton PA; Hall RM
    Spine (Phila Pa 1976); 2008 Aug; 33(17):E580-8. PubMed ID: 18670325
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spinal cord-fragment interactions following burst fracture: an in vitro model.
    Hall RM; Oakland RJ; Wilcox RK; Barton DC
    J Neurosurg Spine; 2006 Sep; 5(3):243-50. PubMed ID: 16961086
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The importance of fluid-structure interaction in spinal trauma models.
    Persson C; Summers J; Hall RM
    J Neurotrauma; 2011 Jan; 28(1):113-25. PubMed ID: 21047151
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of bone fragment impact velocity on biomechanical parameters related to spinal cord injury: a finite element study.
    Khuyagbaatar B; Kim K; Hyuk Kim Y
    J Biomech; 2014 Aug; 47(11):2820-5. PubMed ID: 24891036
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical indicators of injury severity are decreased with increased thecal sac dimension in a bench-top model of contusion type spinal cord injury.
    Jones CF; Kwon BK; Cripton PA
    J Biomech; 2012 Apr; 45(6):1003-10. PubMed ID: 22349113
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of cerebrospinal fluid thickness on traumatic spinal cord deformation.
    Persson C; Summers J; Hall RM
    J Appl Biomech; 2011 Nov; 27(4):330-5. PubMed ID: 21896951
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pressure changes in spinal canal and evaluation of spinal cord injuries in spinal section subjected to impact.
    Xie B; Wu M; Yang J
    Chin J Traumatol; 2001 Aug; 4(3):175-9. PubMed ID: 11835726
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Finite element analysis of spinal cord injury in the rat.
    Maikos JT; Qian Z; Metaxas D; Shreiber DI
    J Neurotrauma; 2008 Jul; 25(7):795-816. PubMed ID: 18627257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Biomechanical behaviors of cervical spinal cord injury related to various bone fragment impact velocities: a finite element study].
    Duan S; Zhu ZQ; Wang KF; Liu CJ; Xu S; Xia WW; Liu HY
    Zhonghua Yi Xue Za Zhi; 2018 Mar; 98(11):837-841. PubMed ID: 29609266
    [No Abstract]   [Full Text] [Related]  

  • 11. Instrumented artificial spinal cord for human cervical pressure measurement.
    Pintar FA; Schlick MB; Yoganandan N; Maiman DJ
    Biomed Mater Eng; 1996; 6(3):219-29. PubMed ID: 8922266
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of intrathecal hypotension on tissue perfusion and pathophysiological outcome after acute spinal cord injury.
    Horn EM; Theodore N; Assina R; Spetzler RF; Sonntag VK; Preul MC
    Neurosurg Focus; 2008; 25(5):E12. PubMed ID: 18980472
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neurological deficit in a consecutive series of vertebral fracture patients with bony fragments within the spinal canal Rosenberg et al. Spinal Cord (1997) 35: 92-95.
    el-Masry WS
    Spinal Cord; 1997 Dec; 35(12):861. PubMed ID: 9429267
    [No Abstract]   [Full Text] [Related]  

  • 14. Comparison of numerical methods for cerebrospinal fluid representation and fluid-structure interaction during transverse impact of a finite element spinal cord model.
    Rycman A; McLachlin S; Cronin DS
    Int J Numer Method Biomed Eng; 2022 Mar; 38(3):e3570. PubMed ID: 34997836
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A one-dimensional model of the spinal cerebrospinal-fluid compartment.
    Cirovic S; Kim M
    J Biomech Eng; 2012 Feb; 134(2):021005. PubMed ID: 22482672
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bone marrow stromal cells infused into the cerebrospinal fluid promote functional recovery of the injured rat spinal cord with reduced cavity formation.
    Ohta M; Suzuki Y; Noda T; Ejiri Y; Dezawa M; Kataoka K; Chou H; Ishikawa N; Matsumoto N; Iwashita Y; Mizuta E; Kuno S; Ide C
    Exp Neurol; 2004 Jun; 187(2):266-78. PubMed ID: 15144853
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparison of single and incremental impact approaches for producing experimental thoracolumbar burst fractures.
    Wang XY; Dai LY; Xu HZ; Chi YL
    J Neurosurg Spine; 2007 Aug; 7(2):199-204. PubMed ID: 17688060
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling of therapeutic dialysis of cerebrospinal fluid by epidural cooling in spinal cord injuries.
    Goetz T; Romero-Sierra C; Ethier R; Henriksen RN
    J Neurotrauma; 1988; 5(2):139-50. PubMed ID: 3225857
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of experimental, morphological and mechanical factors on the murine spinal cord subjected to transverse contusion: A finite element study.
    Fournely M; Petit Y; Wagnac E; Evin M; Arnoux PJ
    PLoS One; 2020; 15(5):e0232975. PubMed ID: 32392241
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomechanics of spinal cord injury: a multimodal investigation using ex vivo guinea pig spinal cord white matter.
    Ouyang H; Galle B; Li J; Nauman E; Shi R
    J Neurotrauma; 2008 Jan; 25(1):19-29. PubMed ID: 18355155
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.