These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 19442065)

  • 1. Performance of machine learning methods for ligand-based virtual screening.
    Plewczynski D; Spieser SA; Koch U
    Comb Chem High Throughput Screen; 2009 May; 12(4):358-68. PubMed ID: 19442065
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine learning in virtual screening.
    Melville JL; Burke EK; Hirst JD
    Comb Chem High Throughput Screen; 2009 May; 12(4):332-43. PubMed ID: 19442063
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative analysis of machine learning methods in ligand-based virtual screening of large compound libraries.
    Ma XH; Jia J; Zhu F; Xue Y; Li ZR; Chen YZ
    Comb Chem High Throughput Screen; 2009 May; 12(4):344-57. PubMed ID: 19442064
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potency-directed similarity searching using support vector machines.
    Wassermann AM; Heikamp K; Bajorath J
    Chem Biol Drug Des; 2011 Jan; 77(1):30-8. PubMed ID: 21114788
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure-based drug screening and ligand-based drug screening with machine learning.
    Fukunishi Y
    Comb Chem High Throughput Screen; 2009 May; 12(4):397-408. PubMed ID: 19442067
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine learning for virtual screening (part 1).
    Ivanciuc O
    Comb Chem High Throughput Screen; 2009 May; 12(4):330-1. PubMed ID: 19442062
    [No Abstract]   [Full Text] [Related]  

  • 7. New methods for ligand-based virtual screening: use of data fusion and machine learning to enhance the effectiveness of similarity searching.
    Hert J; Willett P; Wilton DJ; Acklin P; Azzaoui K; Jacoby E; Schuffenhauer A
    J Chem Inf Model; 2006; 46(2):462-70. PubMed ID: 16562973
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large-scale learning of structure-activity relationships using a linear support vector machine and problem-specific metrics.
    Hinselmann G; Rosenbaum L; Jahn A; Fechner N; Ostermann C; Zell A
    J Chem Inf Model; 2011 Feb; 51(2):203-13. PubMed ID: 21207929
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Virtual screening with support vector machines and structure kernels.
    Mahé P; Vert JP
    Comb Chem High Throughput Screen; 2009 May; 12(4):409-23. PubMed ID: 19442068
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ligand prediction from protein sequence and small molecule information using support vector machines and fingerprint descriptors.
    Geppert H; Humrich J; Stumpfe D; Gärtner T; Bajorath J
    J Chem Inf Model; 2009 Apr; 49(4):767-79. PubMed ID: 19309114
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Virtual Screening Meets Deep Learning.
    Pérez-Sianes J; Pérez-Sánchez H; Díaz F
    Curr Comput Aided Drug Des; 2019; 15(1):6-28. PubMed ID: 30338743
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New methodologies for ligand-based virtual screening.
    Stahura FL; Bajorath J
    Curr Pharm Des; 2005; 11(9):1189-202. PubMed ID: 15853666
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel technologies for virtual screening.
    Lengauer T; Lemmen C; Rarey M; Zimmermann M
    Drug Discov Today; 2004 Jan; 9(1):27-34. PubMed ID: 14761803
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ligand-based virtual screening using Bayesian inference network and reweighted fragments.
    Ahmed A; Abdo A; Salim N
    ScientificWorldJournal; 2012; 2012():410914. PubMed ID: 22623895
    [TBL] [Abstract][Full Text] [Related]  

  • 15. StructRank: a new approach for ligand-based virtual screening.
    Rathke F; Hansen K; Brefeld U; Müller KR
    J Chem Inf Model; 2011 Jan; 51(1):83-92. PubMed ID: 21166393
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Virtual screening by a new Clustering-based Weighted Similarity Extreme Learning Machine approach.
    Pasupa K; Kudisthalert W
    PLoS One; 2018; 13(4):e0195478. PubMed ID: 29652912
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of machine-learning methods for ligand-based virtual screening.
    Chen B; Harrison RF; Papadatos G; Willett P; Wood DJ; Lewell XQ; Greenidge P; Stiefl N
    J Comput Aided Mol Des; 2007; 21(1-3):53-62. PubMed ID: 17205373
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How wrong can we get? A review of machine learning approaches and error bars.
    Schwaighofer A; Schroeter T; Mika S; Blanchard G
    Comb Chem High Throughput Screen; 2009 Jun; 12(5):453-68. PubMed ID: 19519325
    [TBL] [Abstract][Full Text] [Related]  

  • 19. BgN-Score and BsN-Score: bagging and boosting based ensemble neural networks scoring functions for accurate binding affinity prediction of protein-ligand complexes.
    Ashtawy HM; Mahapatra NR
    BMC Bioinformatics; 2015; 16 Suppl 4(Suppl 4):S8. PubMed ID: 25734685
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combining machine learning and pharmacophore-based interaction fingerprint for in silico screening.
    Sato T; Honma T; Yokoyama S
    J Chem Inf Model; 2010 Jan; 50(1):170-85. PubMed ID: 20038188
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.