These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 19442517)

  • 1. Thermochemical conversion of livestock wastes: carbonization of swine solids.
    Ro KS; Cantrell KB; Hunt PG; Ducey TF; Vanotti MB; Szogi AA
    Bioresour Technol; 2009 Nov; 100(22):5466-71. PubMed ID: 19442517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Co-pyrolysis of swine manure with agricultural plastic waste: laboratory-scale study.
    Ro KS; Hunt PG; Jackson MA; Compton DL; Yates SR; Cantrell K; Chang S
    Waste Manag; 2014 Aug; 34(8):1520-8. PubMed ID: 24810203
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal processing of sewage sludge by drying, pyrolysis, gasification and combustion.
    Stolarek P; Ledakowicz S
    Water Sci Technol; 2001; 44(10):333-9. PubMed ID: 11794675
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermochemical decomposition of sewage sludge in CO2 and N2 atmosphere.
    Jindarom C; Meeyoo V; Rirksomboon T; Rangsunvigit P
    Chemosphere; 2007 Apr; 67(8):1477-84. PubMed ID: 17289108
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermogravimetric analysis of biowastes during combustion.
    Otero M; Sanchez ME; Gómez X; Morán A
    Waste Manag; 2010 Jul; 30(7):1183-7. PubMed ID: 20079622
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermogravimetric analysis and kinetic study on large particles of printed circuit board wastes.
    Quan C; Li A; Gao N
    Waste Manag; 2009 Aug; 29(8):2353-60. PubMed ID: 19398318
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of manure feedstock, slow pyrolysis, and hydrothermal temperature on manure thermochemical and combustion properties.
    Zhou S; Liang H; Han L; Huang G; Yang Z
    Waste Manag; 2019 Apr; 88():85-95. PubMed ID: 31079653
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pyrolytic characteristics of sewage sludge.
    Thipkhunthod P; Meeyoo V; Rangsunvigit P; Kitiyanan B; Siemanond K; Rirksomboon T
    Chemosphere; 2006 Aug; 64(6):955-62. PubMed ID: 16483633
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pyrolysis characteristics and kinetics of chicken litter.
    Kim SS; Agblevor FA
    Waste Manag; 2007; 27(1):135-40. PubMed ID: 16540303
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermogravimetric characterization of dairy manure as pyrolysis and combustion feedstocks.
    Wu H; Hanna MA; Jones DD
    Waste Manag Res; 2012 Oct; 30(10):1066-71. PubMed ID: 22767875
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pyrolysis characteristics and kinetics of Arundo donax using thermogravimetric analysis.
    Jeguirim M; Trouvé G
    Bioresour Technol; 2009 Sep; 100(17):4026-31. PubMed ID: 19362825
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pyrolysis characteristics and kinetics of the marine microalgae Dunaliella tertiolecta using thermogravimetric analyzer.
    Shuping Z; Yulong W; Mingde Y; Chun L; Junmao T
    Bioresour Technol; 2010 Jan; 101(1):359-65. PubMed ID: 19720523
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Depletion of chlortetracycline during composting of aged and spiked manures.
    Bao Y; Zhou Q; Guan L; Wang Y
    Waste Manag; 2009 Apr; 29(4):1416-23. PubMed ID: 18954968
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physical and thermochemical characterization of rice husk char as a potential biomass energy source.
    Maiti S; Dey S; Purakayastha S; Ghosh B
    Bioresour Technol; 2006 Nov; 97(16):2065-70. PubMed ID: 16298126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Co-pyrolysis behaviour and kinetic of two typical solid wastes in China and characterisation of activated carbon prepared from pyrolytic char.
    Ma Y; Niu R; Wang X; Wang Q; Wang X; Sun X
    Waste Manag Res; 2014 Nov; 32(11):1123-33. PubMed ID: 25378256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of the pig manure separation system on the energy production potentials.
    Wnetrzak R; Kwapinski W; Peters K; Sommer SG; Jensen LS; Leahy JJ
    Bioresour Technol; 2013 May; 136():502-8. PubMed ID: 23567723
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of thermodynamic parameters in the pyrolysis conversion of biomass and manure to biochars using thermogravimetric analysis.
    Xu Y; Chen B
    Bioresour Technol; 2013 Oct; 146():485-493. PubMed ID: 23958681
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetics of the pyrolytic and hydrothermal decomposition of water hyacinth.
    Luo G; Strong PJ; Wang H; Ni W; Shi W
    Bioresour Technol; 2011 Jul; 102(13):6990-4. PubMed ID: 21558054
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study of biological stabilization processes of cattle and poultry manure by thermogravimetric analysis and (13)C NMR.
    Gómez X; Diaz MC; Cooper M; Blanco D; Morán A; Snape CE
    Chemosphere; 2007 Aug; 68(10):1889-97. PubMed ID: 17433408
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Logistic distributed activation energy model--part 2: application to cellulose pyrolysis.
    Cai J; Yang S; Li T
    Bioresour Technol; 2011 Feb; 102(3):3642-4. PubMed ID: 21134741
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.