BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

422 related articles for article (PubMed ID: 19442660)

  • 1. Local calcium-dependent mechanisms determine whether a cut axonal end assembles a retarded endbulb or competent growth cone.
    Kamber D; Erez H; Spira ME
    Exp Neurol; 2009 Sep; 219(1):112-25. PubMed ID: 19442660
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of microtubule-based traps controls the sorting and concentration of vesicles to restricted sites of regenerating neurons after axotomy.
    Erez H; Malkinson G; Prager-Khoutorsky M; De Zeeuw CI; Hoogenraad CC; Spira ME
    J Cell Biol; 2007 Feb; 176(4):497-507. PubMed ID: 17283182
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Critical calpain-dependent ultrastructural alterations underlie the transformation of an axonal segment into a growth cone after axotomy of cultured Aplysia neurons.
    Spira ME; Oren R; Dormann A; Gitler D
    J Comp Neurol; 2003 Mar; 457(3):293-312. PubMed ID: 12541311
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On-line confocal imaging of the events leading to structural dedifferentiation of an axonal segment into a growth cone after axotomy.
    Sahly I; Khoutorsky A; Erez H; Prager-Khoutorsky M; Spira ME
    J Comp Neurol; 2006 Feb; 494(5):705-20. PubMed ID: 16374810
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Local self-assembly mechanisms underlie the differential transformation of the proximal and distal cut axonal ends into functional and aberrant growth cones.
    Erez H; Spira ME
    J Comp Neurol; 2008 Mar; 507(1):1019-30. PubMed ID: 18092341
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calcium, protease activation, and cytoskeleton remodeling underlie growth cone formation and neuronal regeneration.
    Spira ME; Oren R; Dormann A; Ilouz N; Lev S
    Cell Mol Neurobiol; 2001 Dec; 21(6):591-604. PubMed ID: 12043835
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neurite retraction and regrowth regulated by membrane retrieval, membrane supply, and actin dynamics.
    Prager-Khoutorsky M; Spira ME
    Brain Res; 2009 Jan; 1251():65-79. PubMed ID: 19022228
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PI3K activation by IGF-1 is essential for the regulation of membrane expansion at the nerve growth cone.
    Laurino L; Wang XX; de la Houssaye BA; Sosa L; Dupraz S; Cáceres A; Pfenninger KH; Quiroga S
    J Cell Sci; 2005 Aug; 118(Pt 16):3653-62. PubMed ID: 16046480
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Short window of opportunity for calpain induced growth cone formation after axotomy of Aplysia neurons.
    Gitler D; Spira ME
    J Neurobiol; 2002 Sep; 52(4):267-79. PubMed ID: 12210094
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The phosphorylation state of neuronal processes determines growth cone formation after neuronal injury.
    Geddis MS; Rehder V
    J Neurosci Res; 2003 Oct; 74(2):210-20. PubMed ID: 14515350
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NCS-1 differentially regulates growth cone and somata calcium channels in Lymnaea neurons.
    Hui K; Feng ZP
    Eur J Neurosci; 2008 Feb; 27(3):631-43. PubMed ID: 18279316
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clustering of excess growth resources within leading growth cones underlies the recurrent "deposition" of varicosities along developing neurites.
    Malkinson G; Spira ME
    Exp Neurol; 2010 Sep; 225(1):140-53. PubMed ID: 20558161
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real time imaging of calcium-induced localized proteolytic activity after axotomy and its relation to growth cone formation.
    Gitler D; Spira ME
    Neuron; 1998 Jun; 20(6):1123-35. PubMed ID: 9655501
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Responses of the nerve cell body to axotomy.
    Richardson PM; Miao T; Wu D; Zhang Y; Yeh J; Bo X
    Neurosurgery; 2009 Oct; 65(4 Suppl):A74-9. PubMed ID: 19927082
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The ability of axons to regenerate their growth cones depends on axonal type and age, and is regulated by calcium, cAMP and ERK.
    Chierzi S; Ratto GM; Verma P; Fawcett JW
    Eur J Neurosci; 2005 Apr; 21(8):2051-62. PubMed ID: 15869501
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microtubule transport in the axon: Re-thinking a potential role for the actin cytoskeleton.
    Myers KA; He Y; Hasaka TP; Baas PW
    Neuroscientist; 2006 Apr; 12(2):107-18. PubMed ID: 16514008
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nitric oxide regulates growth cone filopodial dynamics via ryanodine receptor-mediated calcium release.
    Welshhans K; Rehder V
    Eur J Neurosci; 2007 Sep; 26(6):1537-47. PubMed ID: 17714493
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of Aplysia neurons for the study of cellular alterations and the resealing of transected axons in vitro.
    Spira ME; Dormann A; Ashery U; Gabso M; Gitler D; Benbassat D; Oren R; Ziv NE
    J Neurosci Methods; 1996 Oct; 69(1):91-102. PubMed ID: 8912939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Laminin activates CaMK-II to stabilize nascent embryonic axons.
    Easley CA; Faison MO; Kirsch TL; Lee JA; Seward ME; Tombes RM
    Brain Res; 2006 May; 1092(1):59-68. PubMed ID: 16690036
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Axonal regeneration of an identified Helisoma neuron depends on the site of axotomy.
    Kruk PJ; Bulloch AG
    J Neurosci Res; 1992 Mar; 31(3):401-12. PubMed ID: 1640492
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.