These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. Expanded utility of the native chemical ligation reaction. Yeo DS; Srinivasan R; Chen GY; Yao SQ Chemistry; 2004 Oct; 10(19):4664-72. PubMed ID: 15372685 [TBL] [Abstract][Full Text] [Related]
43. SICLOPPS cyclic peptide libraries in drug discovery. Tavassoli A Curr Opin Chem Biol; 2017 Jun; 38():30-35. PubMed ID: 28258013 [TBL] [Abstract][Full Text] [Related]
44. Protein splicing elements and plants: from transgene containment to protein purification. Evans TC; Xu MQ; Pradhan S Annu Rev Plant Biol; 2005; 56():375-92. PubMed ID: 15862101 [TBL] [Abstract][Full Text] [Related]
45. Split cGAL, an intersectional strategy using a split intein for refined spatiotemporal transgene control in Wang H; Liu J; Yuet KP; Hill AJ; Sternberg PW Proc Natl Acad Sci U S A; 2018 Apr; 115(15):3900-3905. PubMed ID: 29581308 [TBL] [Abstract][Full Text] [Related]
47. Preparation of Semisynthetic Peptides Macrocycles Using Split Inteins. Palei S; Mootz HD Methods Mol Biol; 2017; 1495():77-92. PubMed ID: 27714611 [TBL] [Abstract][Full Text] [Related]
48. Traceless Production of Cyclic Peptide Libraries in E. coli. Townend JE; Tavassoli A ACS Chem Biol; 2016 Jun; 11(6):1624-30. PubMed ID: 27027149 [TBL] [Abstract][Full Text] [Related]
49. Protein Splicing: From the Foundations to the Development of Biotechnological Applications. Romero-Casañas A; Gordo V; Castro J; Ribó M Methods Mol Biol; 2020; 2133():15-29. PubMed ID: 32144661 [TBL] [Abstract][Full Text] [Related]
50. Efficient recombinant expression of SFTI-1 in bacterial cells using intein-mediated protein trans-splicing. Li Y; Aboye T; Breindel L; Shekhtman A; Camarero JA Biopolymers; 2016 Nov; 106(6):818-824. PubMed ID: 27178003 [TBL] [Abstract][Full Text] [Related]
51. Protein splicing of a recombinase intein induced by ssDNA and DNA damage. Lennon CW; Stanger M; Belfort M Genes Dev; 2016 Dec; 30(24):2663-2668. PubMed ID: 28031248 [TBL] [Abstract][Full Text] [Related]
52. Post-translational enzyme activation in an animal via optimized conditional protein splicing. Schwartz EC; Saez L; Young MW; Muir TW Nat Chem Biol; 2007 Jan; 3(1):50-4. PubMed ID: 17128262 [TBL] [Abstract][Full Text] [Related]
53. Solution structure of DnaE intein from Nostoc punctiforme: structural basis for the design of a new split intein suitable for site-specific chemical modification. Oeemig JS; Aranko AS; Djupsjöbacka J; Heinämäki K; Iwaï H FEBS Lett; 2009 May; 583(9):1451-6. PubMed ID: 19344715 [TBL] [Abstract][Full Text] [Related]
54. Split-intein mediated circular ligation used in the synthesis of cyclic peptide libraries in E. coli. Tavassoli A; Benkovic SJ Nat Protoc; 2007; 2(5):1126-33. PubMed ID: 17546003 [TBL] [Abstract][Full Text] [Related]
55. Protein ligation: an enabling technology for the biophysical analysis of proteins. Muralidharan V; Muir TW Nat Methods; 2006 Jun; 3(6):429-38. PubMed ID: 16721376 [TBL] [Abstract][Full Text] [Related]
56. Intracellular Production of Cyclic Peptide Libraries with SICLOPPS. Osher EL; Tavassoli A Methods Mol Biol; 2017; 1495():27-39. PubMed ID: 27714608 [TBL] [Abstract][Full Text] [Related]
57. The naturally split Npu DnaE intein exhibits an extraordinarily high rate in the protein trans-splicing reaction. Zettler J; Schütz V; Mootz HD FEBS Lett; 2009 Mar; 583(5):909-14. PubMed ID: 19302791 [TBL] [Abstract][Full Text] [Related]
59. Inteins as Drug Targets and Therapeutic Tools. Tharappel AM; Li Z; Li H Front Mol Biosci; 2022; 9():821146. PubMed ID: 35211511 [TBL] [Abstract][Full Text] [Related]
60. Databases of protein-protein interactions and their use in drug discovery. Fuentes G; Oyarzabal J; Rojas AM Curr Opin Drug Discov Devel; 2009 May; 12(3):358-66. PubMed ID: 19396737 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]