These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

347 related articles for article (PubMed ID: 1944286)

  • 21. Ammonia regulates VID30 expression and Vid30p function shifts nitrogen metabolism toward glutamate formation especially when Saccharomyces cerevisiae is grown in low concentrations of ammonia.
    van der Merwe GK; Cooper TG; van Vuuren HJ
    J Biol Chem; 2001 Aug; 276(31):28659-66. PubMed ID: 11356843
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nitrogen catabolite repression in Saccharomyces cerevisiae.
    Hofman-Bang J
    Mol Biotechnol; 1999 Aug; 12(1):35-73. PubMed ID: 10554772
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Roles of URE2 and GLN3 in the proline utilization pathway in Saccharomyces cerevisiae.
    Xu S; Falvey DA; Brandriss MC
    Mol Cell Biol; 1995 Apr; 15(4):2321-30. PubMed ID: 7891726
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The DAL81 gene product is required for induced expression of two differently regulated nitrogen catabolic genes in Saccharomyces cerevisiae.
    Bricmont PA; Daugherty JR; Cooper TG
    Mol Cell Biol; 1991 Feb; 11(2):1161-6. PubMed ID: 1990272
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Unravelling the transcriptional regulation of Saccharomyces cerevisiae UGA genes: the dual role of transcription factor Leu3.
    Palavecino-Ruiz M; Bermudez-Moretti M; Correa-Garcia S
    Microbiology (Reading); 2017 Nov; 163(11):1692-1701. PubMed ID: 29058647
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Saccharomyces cerevisiae GATA sequences function as TATA elements during nitrogen catabolite repression and when Gln3p is excluded from the nucleus by overproduction of Ure2p.
    Cox KH; Rai R; Distler M; Daugherty JR; Coffman JA; Cooper TG
    J Biol Chem; 2000 Jun; 275(23):17611-8. PubMed ID: 10748041
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of abolishing Whi2 on the proteome and nitrogen catabolite repression-sensitive protein production.
    Tate JJ; Marsikova J; Vachova L; Palkova Z; Cooper TG
    G3 (Bethesda); 2022 Mar; 12(3):. PubMed ID: 35100365
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Requirement of upstream activation sequences for nitrogen catabolite repression of the allantoin system genes in Saccharomyces cerevisiae.
    Cooper TG; Rai R; Yoo HS
    Mol Cell Biol; 1989 Dec; 9(12):5440-4. PubMed ID: 2511434
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nitrogen GATA factors participate in transcriptional regulation of vacuolar protease genes in Saccharomyces cerevisiae.
    Coffman JA; Cooper TG
    J Bacteriol; 1997 Sep; 179(17):5609-13. PubMed ID: 9287023
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genetic regulation of nitrogen metabolism in the fungi.
    Marzluf GA
    Microbiol Mol Biol Rev; 1997 Mar; 61(1):17-32. PubMed ID: 9106362
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The DAL82 protein of Saccharomyces cerevisiae binds to the DAL upstream induction sequence (UIS).
    Dorrington RA; Cooper TG
    Nucleic Acids Res; 1993 Aug; 21(16):3777-84. PubMed ID: 8367295
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interplay between the transcription factors acting on the GATA- and GABA-responsive elements of Saccharomyces cerevisiae UGA promoters.
    Cardillo SB; Levi CE; Bermúdez Moretti M; Correa García S
    Microbiology (Reading); 2012 Apr; 158(Pt 4):925-935. PubMed ID: 22282516
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Differentially regulated malate synthase genes participate in carbon and nitrogen metabolism of S. cerevisiae.
    Hartig A; Simon MM; Schuster T; Daugherty JR; Yoo HS; Cooper TG
    Nucleic Acids Res; 1992 Nov; 20(21):5677-86. PubMed ID: 1454530
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nuclear localization domains of GATA activator Gln3 are required for transcription of target genes through dephosphorylation in Saccharomyces cerevisiae.
    Numamoto M; Tagami S; Ueda Y; Imabeppu Y; Sasano Y; Sugiyama M; Maekawa H; Harashima S
    J Biosci Bioeng; 2015 Aug; 120(2):121-7. PubMed ID: 25641578
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Regulation of the urea active transporter gene (DUR3) in Saccharomyces cerevisiae.
    ElBerry HM; Majumdar ML; Cunningham TS; Sumrada RA; Cooper TG
    J Bacteriol; 1993 Aug; 175(15):4688-98. PubMed ID: 8335627
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transmitting the signal of excess nitrogen in Saccharomyces cerevisiae from the Tor proteins to the GATA factors: connecting the dots.
    Cooper TG
    FEMS Microbiol Rev; 2002 Aug; 26(3):223-38. PubMed ID: 12165425
    [TBL] [Abstract][Full Text] [Related]  

  • 37. General Amino Acid Control and 14-3-3 Proteins Bmh1/2 Are Required for Nitrogen Catabolite Repression-Sensitive Regulation of Gln3 and Gat1 Localization.
    Tate JJ; Buford D; Rai R; Cooper TG
    Genetics; 2017 Feb; 205(2):633-655. PubMed ID: 28007891
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Isolation and characterization of mutants that produce the allantoin-degrading enzymes constitutively in Saccharomyces cerevisiae.
    Chisholm G; Cooper TG
    Mol Cell Biol; 1982 Sep; 2(9):1088-95. PubMed ID: 6757722
    [TBL] [Abstract][Full Text] [Related]  

  • 39. DAL82, a second gene required for induction of allantoin system gene transcription in Saccharomyces cerevisiae.
    Olive MG; Daugherty JR; Cooper TG
    J Bacteriol; 1991 Jan; 173(1):255-61. PubMed ID: 1898922
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Role of the GATA factors Gln3p and Nil1p of Saccharomyces cerevisiae in the expression of nitrogen-regulated genes.
    Stanbrough M; Rowen DW; Magasanik B
    Proc Natl Acad Sci U S A; 1995 Oct; 92(21):9450-4. PubMed ID: 7568152
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.