These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 19442979)

  • 1. Robot-based methodology for a kinematic and kinetic analysis of unconstrained, but reproducible upper extremity movement.
    Popovic N; Williams S; Schmitz-Rode T; Rau G; Disselhorst-Klug C
    J Biomech; 2009 Jul; 42(10):1570-1573. PubMed ID: 19442979
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human arm joints reconstruction algorithm in rehabilitation therapies assisted by end-effector robotic devices.
    Bertomeu-Motos A; Blanco A; Badesa FJ; Barios JA; Zollo L; Garcia-Aracil N
    J Neuroeng Rehabil; 2018 Feb; 15(1):10. PubMed ID: 29458397
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modifying upper-limb inter-joint coordination in healthy subjects by training with a robotic exoskeleton.
    Proietti T; Guigon E; Roby-Brami A; Jarrassé N
    J Neuroeng Rehabil; 2017 Jun; 14(1):55. PubMed ID: 28606179
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coordinating two degrees of freedom during human arm movement: load and speed invariance of relative joint torques.
    Gottlieb GL; Song Q; Hong DA; Corcos DM
    J Neurophysiol; 1996 Nov; 76(5):3196-206. PubMed ID: 8930266
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The timing of control signals underlying fast point-to-point arm movements.
    Ghafouri M; Feldman AG
    Exp Brain Res; 2001 Apr; 137(3-4):411-23. PubMed ID: 11355386
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic biomechanical model for assessing and monitoring robot-assisted upper-limb therapy.
    Abdullah HA; Tarry C; Datta R; Mittal GS; Abderrahim M
    J Rehabil Res Dev; 2007; 44(1):43-62. PubMed ID: 17551857
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multijoint upper limb torque estimation from sEMG measurements.
    Bueno DR; Montano L
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():7233-6. PubMed ID: 24111414
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of the effects of the Arm Light Exoskeleton on movement execution and muscle activities: a pilot study on healthy subjects.
    Pirondini E; Coscia M; Marcheschi S; Roas G; Salsedo F; Frisoli A; Bergamasco M; Micera S
    J Neuroeng Rehabil; 2016 Jan; 13():9. PubMed ID: 26801620
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Robot-assisted arm assessments in spinal cord injured patients: a consideration of concept study.
    Keller U; Schölch S; Albisser U; Rudhe C; Curt A; Riener R; Klamroth-Marganska V
    PLoS One; 2015; 10(5):e0126948. PubMed ID: 25996374
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A simple joint control pattern dominates performance of unconstrained arm movements of daily living tasks.
    Dounskaia N; Shimansky Y; Ganter BK; Vidt ME
    PLoS One; 2020; 15(7):e0235813. PubMed ID: 32658898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of reaching movements of upper arm in robot assisted exercises. Kinematic assessment of robot assisted upper arm reaching single-joint movements.
    Iuppariello L; D'Addio G; Romano M; Bifulco P; Lanzillo B; Pappone N; Cesarelli M
    G Ital Med Lav Ergon; 2016; 38(2):116-27. PubMed ID: 27459844
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of the model's degree of freedom on human body dynamics identification.
    Maita D; Venture G
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():4609-12. PubMed ID: 24110761
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of a Robot Arm Using Decoded Joint Angles from Electrocorticograms in Primate.
    Shin D; Kambara H; Yoshimura N; Koike Y
    Comput Intell Neurosci; 2018; 2018():2580165. PubMed ID: 30420874
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human-Like Behavior Generation Based on Head-Arms Model for Robot Tracking External Targets and Body Parts.
    Zhang Z; Beck A; Magnenat-Thalmann N
    IEEE Trans Cybern; 2015 Aug; 45(8):1390-400. PubMed ID: 25252290
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Postural force fields of the human arm and their role in generating multijoint movements.
    Shadmehr R; Mussa-Ivaldi FA; Bizzi E
    J Neurosci; 1993 Jan; 13(1):45-62. PubMed ID: 8423483
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinematic feedback control laws for generating natural arm movements.
    Kim D; Jang C; Park FC
    Bioinspir Biomim; 2014 Mar; 9(1):016002. PubMed ID: 24343165
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Directional control of planar human arm movement.
    Gottlieb GL; Song Q; Almeida GL; Hong DA; Corcos D
    J Neurophysiol; 1997 Dec; 78(6):2985-98. PubMed ID: 9405518
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Persistence of motor adaptation during constrained, multi-joint, arm movements.
    Scheidt RA; Reinkensmeyer DJ; Conditt MA; Rymer WZ; Mussa-Ivaldi FA
    J Neurophysiol; 2000 Aug; 84(2):853-62. PubMed ID: 10938312
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulation of in vivo dynamics during robot assisted joint movement.
    Bobrowitsch E; Lorenz A; Wülker N; Walter C
    Biomed Eng Online; 2014 Dec; 13():167. PubMed ID: 25516427
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multijoint arm stiffness during movements following stroke: implications for robot therapy.
    Piovesan D; Casadio M; Mussa-Ivaldi FA; Morasso PG
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975372. PubMed ID: 22275576
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.