These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 19442980)

  • 1. Parametric and subject-specific finite element modelling of the lower cervical spine. Influence of geometrical parameters on the motion patterns.
    Laville A; Laporte S; Skalli W
    J Biomech; 2009 Jul; 42(10):1409-1415. PubMed ID: 19442980
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Motion analysis study on sensitivity of finite element model of the cervical spine to geometry.
    Zafarparandeh I; Erbulut DU; Ozer AF
    Proc Inst Mech Eng H; 2016 Jul; 230(7):700-6. PubMed ID: 27107032
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A three-dimensional parameterized finite element model of the lower cervical spine. Study of the influence of the posterior articular facets.
    Maurel N; Lavaste F; Skalli W
    J Biomech; 1997 Sep; 30(9):921-31. PubMed ID: 9302615
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subject-specific multi-validation of a finite element model of ovine cervical functional spinal units.
    Mengoni M; Vasiljeva K; Jones AC; Tarsuslugil SM; Wilcox RK
    J Biomech; 2016 Jan; 49(2):259-66. PubMed ID: 26708919
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Finite element analysis of the cervical spine: a material property sensitivity study.
    Kumaresan S; Yoganandan N; Pintar FA
    Clin Biomech (Bristol, Avon); 1999 Jan; 14(1):41-53. PubMed ID: 10619089
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a finite element model of the human cervical spine.
    Zafarparandeh I; Erbulut DU; Lazoglu I; Ozer AF
    Turk Neurosurg; 2014; 24(3):312-8. PubMed ID: 24848166
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relevance of using a compressive preload in the cervical spine: an experimental and numerical simulating investigation.
    Barrey C; Rousseau MA; Persohn S; Campana S; Perrin G; Skalli W
    Eur J Orthop Surg Traumatol; 2015 Jul; 25 Suppl 1():S155-65. PubMed ID: 25845316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinematics of the subaxial cervical spine in rotation in vivo three-dimensional analysis.
    Ishii T; Mukai Y; Hosono N; Sakaura H; Fujii R; Nakajima Y; Tamura S; Sugamoto K; Yoshikawa H
    Spine (Phila Pa 1976); 2004 Dec; 29(24):2826-31. PubMed ID: 15599286
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of morphological variations on cervical spine segmental responses from inertial loading.
    John JD; Yoganandan N; Arun MWJ; Saravana Kumar G
    Traffic Inj Prev; 2018 Feb; 19(sup1):S29-S36. PubMed ID: 29584503
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Comparison between the Range of Movement Canine Real Cervical Spine and Numerical Simulation - Computer Model Validation].
    Srnec R; Horák Z; Sedláček R; Sedlinská M; Krbec M; Nečas A
    Acta Chir Orthop Traumatol Cech; 2017; 84(2):133-137. PubMed ID: 28809631
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a finite element model of the upper cervical spine and a parameter study of ligament characteristics.
    Brolin K; Halldin P
    Spine (Phila Pa 1976); 2004 Feb; 29(4):376-85. PubMed ID: 15094533
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of load sharing among spinal components of a C5-C6 motion segment using the finite element approach.
    Goel VK; Clausen JD
    Spine (Phila Pa 1976); 1998 Mar; 23(6):684-91. PubMed ID: 9549790
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Can an Endplate-conformed Cervical Cage Provide a Better Biomechanical Environment than a Typical Non-conformed Cage?: A Finite Element Model and Cadaver Study.
    Zhang F; Xu HC; Yin B; Xia XL; Ma XS; Wang HL; Yin J; Shao MH; Lyu FZ; Jiang JY
    Orthop Surg; 2016 Aug; 8(3):367-76. PubMed ID: 27627721
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cervical spine morphology and ligament property variations: A finite element study of their influence on sagittal bending characteristics.
    John JD; Saravana Kumar G; Yoganandan N
    J Biomech; 2019 Mar; 85():18-26. PubMed ID: 30704760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo three-dimensional intervertebral kinematics of the subaxial cervical spine during seated axial rotation and lateral bending via a fluoroscopy-to-CT registration approach.
    Lin CC; Lu TW; Wang TM; Hsu CY; Hsu SJ; Shih TF
    J Biomech; 2014 Oct; 47(13):3310-7. PubMed ID: 25218506
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonlinear finite-element analysis of the lower cervical spine (C4-C6) under axial loading.
    Ng HW; Teo EC
    J Spinal Disord; 2001 Jun; 14(3):201-10. PubMed ID: 11389369
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomechanical analysis of C4-C6 spine segment considering anisotropy of annulus fibrosus.
    Wang Y; Peng X; Guo Z
    Biomed Tech (Berl); 2013 Aug; 58(4):343-51. PubMed ID: 23924518
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison between sheep and human cervical spines: an anatomic, radiographic, bone mineral density, and biomechanical study.
    Kandziora F; Pflugmacher R; Scholz M; Schnake K; Lucke M; Schröder R; Mittlmeier T
    Spine (Phila Pa 1976); 2001 May; 26(9):1028-37. PubMed ID: 11337621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Establishment and Finite Element Analysis of a Three-dimensional Dynamic Model of Upper Cervical Spine Instability.
    Wang XD; Feng MS; Hu YC
    Orthop Surg; 2019 Jun; 11(3):500-509. PubMed ID: 31243925
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomechanical testing simulation of a cadaver spine specimen: development and evaluation study.
    Ahn HS; DiAngelo DJ
    Spine (Phila Pa 1976); 2007 May; 32(11):E330-6. PubMed ID: 17495766
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.