BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 19443006)

  • 1. Enhanced removal of 1,2-dichloroethane by anodophilic microbial consortia.
    Pham H; Boon N; Marzorati M; Verstraete W
    Water Res; 2009 Jun; 43(11):2936-46. PubMed ID: 19443006
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Response of 1,2-dichloroethane-adapted microbial communities to ex-situ biostimulation of polluted groundwater.
    Marzorati M; Borin S; Brusetti L; Daffonchio D; Marsilli C; Carpani G; de Ferra F
    Biodegradation; 2006 Mar; 17(2):143-58. PubMed ID: 16565809
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isotope analysis as a natural reaction probe to determine mechanisms of biodegradation of 1,2-dichloroethane.
    Hirschorn SK; Dinglasan-Panlilio MJ; Edwards EA; Lacrampe-Couloume G; Sherwood Lollar B
    Environ Microbiol; 2007 Jul; 9(7):1651-7. PubMed ID: 17564600
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Membrane-aerated biofilm reactor for the removal of 1,2-dichloroethane by Pseudomonas sp. strain DCA1.
    Hage JC; Van Houten RT; Tramper J; Hartmans S
    Appl Microbiol Biotechnol; 2004 Jun; 64(5):718-25. PubMed ID: 15034684
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Complete lab-scale detoxification of groundwater containing 1,2-dichloroethane.
    De Wildeman S; Linthout G; Van Langenhove H; Verstraete W
    Appl Microbiol Biotechnol; 2004 Feb; 63(5):609-12. PubMed ID: 14566429
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrochemical degradation of 1,2- dichloroethane (DCA) in a synthetic groundwater medium using stainless-steel electrodes.
    Bejankiwar R; Lalman JA; Seth R; Biswas N
    Water Res; 2005 Nov; 39(19):4715-24. PubMed ID: 16289674
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbial oxidation of 1,2-dichloroethane under anoxic conditions with nitrate as electron acceptor in mixed and pure cultures.
    Dinglasan-Panlilio MJ; Dworatzek S; Mabury S; Edwards E
    FEMS Microbiol Ecol; 2006 Jun; 56(3):355-64. PubMed ID: 16689868
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acidification and sulfide formation control during reductive dechlorination of 1,2-dichloroethane in groundwater: Effectiveness and mechanistic study.
    Wang SY; Chen SC; Lin YC; Kuo YC; Chen JY; Kao CM
    Chemosphere; 2016 Oct; 160():216-29. PubMed ID: 27376861
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sequential anode-cathode configuration improves cathodic oxygen reduction and effluent quality of microbial fuel cells.
    Freguia S; Rabaey K; Yuan Z; Keller J
    Water Res; 2008 Mar; 42(6-7):1387-96. PubMed ID: 17996270
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reactive iron barriers: a niche enabling microbial dehalorespiration of 1,2-dichloroethane.
    Zemb O; Lee M; Low A; Manefield M
    Appl Microbiol Biotechnol; 2010 Sep; 88(1):319-25. PubMed ID: 20607230
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biodegradable surfactant stabilized nanoscale zero-valent iron for in situ treatment of vinyl chloride and 1,2-dichloroethane.
    Wei YT; Wu SC; Yang SW; Che CH; Lien HL; Huang DH
    J Hazard Mater; 2012 Apr; 211-212():373-80. PubMed ID: 22118849
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biodegradation of vinyl chloride, cis-dichloroethene and 1,2-dichloroethane in the alkene/alkane-oxidising Mycobacterium strain NBB4.
    Le NB; Coleman NV
    Biodegradation; 2011 Nov; 22(6):1095-108. PubMed ID: 21365473
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Co-occurrence of genes for aerobic and anaerobic biodegradation of dichloroethane in organochlorine-contaminated groundwater.
    Munro JE; Kimyon Ö; Rich DJ; Koenig J; Tang S; Low A; Lee M; Manefield M; Coleman NV
    FEMS Microbiol Ecol; 2017 Nov; 93(11):. PubMed ID: 29040474
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of biostimulation and bioaugmentation for removing chlorinated volatile organic compounds from groundwater at a former manufacture plant.
    Zhang S; Hou Z; Du XM; Li DM; Lu XX
    Biodegradation; 2016 Nov; 27(4-6):223-236. PubMed ID: 27351716
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aerobic bioremediation of 1,2 dichloroethane and vinyl chloride at field scale.
    Davis GB; Patterson BM; Johnston CD
    J Contam Hydrol; 2009 Jun; 107(1-2):91-100. PubMed ID: 19428139
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Degradation of 1,2-dichloroethane by microbial communities from river sediment at various redox conditions.
    van der Zaan B; de Weert J; Rijnaarts H; de Vos WM; Smidt H; Gerritse J
    Water Res; 2009 Jul; 43(13):3207-16. PubMed ID: 19501382
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioremediation of 1,2-dichloroethane contaminated groundwater: Microcosm and microbial diversity studies.
    Wang SY; Kuo YC; Huang YZ; Huang CW; Kao CM
    Environ Pollut; 2015 Aug; 203():97-106. PubMed ID: 25863886
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrated function of microbial fuel cell (MFC) as bio-electrochemical treatment system associated with bioelectricity generation under higher substrate load.
    Mohan SV; Raghavulu SV; Peri D; Sarma PN
    Biosens Bioelectron; 2009 Mar; 24(7):2021-7. PubMed ID: 19058958
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Removal of selenite from wastewater using microbial fuel cells.
    Catal T; Bermek H; Liu H
    Biotechnol Lett; 2009 Aug; 31(8):1211-6. PubMed ID: 19343501
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Continuous power generation and microbial community structure of the anode biofilms in a three-stage microbial fuel cell system.
    Chung K; Okabe S
    Appl Microbiol Biotechnol; 2009 Jul; 83(5):965-77. PubMed ID: 19404637
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.