These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 19443016)
1. Mass loading and partitioning of dioxins in irrigation runoff from Japanese paddy fields: combination usage of the CALUX assay with HRGC/HRMS. Kanematsu M; Shimizu Y; Sato K; Kim S; Suzuki T; Park B; Saino R; Nakamura M Chemosphere; 2009 Aug; 76(6):860-6. PubMed ID: 19443016 [TBL] [Abstract][Full Text] [Related]
2. Origins and transport of aquatic dioxins in the Japanese watershed: soil contamination, land use, and soil runoff events. Kanematsu M; Shimizu Y; Sato K; Kim S; Suzuki T; Park B; Saino R; Nakamura M Environ Sci Technol; 2009 Jun; 43(12):4260-6. PubMed ID: 19603632 [TBL] [Abstract][Full Text] [Related]
3. Runoff characteristics of particulate pesticides in a river from paddy fields. Inoue T; Ebise S; Numabe A; Nagafuchi O; Matsui Y Water Sci Technol; 2002; 45(9):121-6. PubMed ID: 12079093 [TBL] [Abstract][Full Text] [Related]
4. Runoff characteristics of pesticides from paddy fields and reduction of risk to the aquatic environment. Ebise S; Inoue T Water Sci Technol; 2002; 45(9):127-31. PubMed ID: 12079094 [TBL] [Abstract][Full Text] [Related]
5. Exposure risk assessment and evaluation of the best management practice for controlling pesticide runoff from paddy fields. Part 1: Paddy watershed monitoring. Vu SH; Ishihara S; Watanabe H Pest Manag Sci; 2006 Dec; 62(12):1193-206. PubMed ID: 17099930 [TBL] [Abstract][Full Text] [Related]
6. Distribution of dioxins in surface soils and river-mouth sediments and their relevance to watershed properties. Kanematsu M; Shimizu Y; Sato K; Kim S; Suzuki T; Park B; Hattori K; Nakamura M; Yabushita H; Yokota K Water Sci Technol; 2006; 53(2):11-21. PubMed ID: 16594319 [TBL] [Abstract][Full Text] [Related]
7. PCDD/F contamination over time in Japanese paddy soils. Seike N; Kashiwagi N; Otani T Environ Sci Technol; 2007 Apr; 41(7):2210-5. PubMed ID: 17438765 [TBL] [Abstract][Full Text] [Related]
8. Application of GC-HRMS and GC×GC-TOFMS to aid in the understanding of a dioxin assay's performance for soil and sediment samples. Dindal A; Thompson E; Strozier E; Billets S Environ Sci Technol; 2011 Dec; 45(24):10501-8. PubMed ID: 22017271 [TBL] [Abstract][Full Text] [Related]
9. Agreement between breast milk dioxin levels by CALUX bioassay and chemical analysis in a population survey in Hong Kong. Hui LL; Hedley AJ; Nelson EA; Malisch R; Wong TW; Cowling BJ Chemosphere; 2007 Oct; 69(8):1287-94. PubMed ID: 17618674 [TBL] [Abstract][Full Text] [Related]
10. A study on pesticide runoff from paddy fields to a river in rural region--2: development and application of a mathematical model. Nakano Y; Yoshida T; Inoue T Water Res; 2004 Jul; 38(13):3023-30. PubMed ID: 15261540 [TBL] [Abstract][Full Text] [Related]
11. DRE-CALUX bioassay in comparison with HRGC/MS for measurement of toxic equivalence in environmental samples. Joung KE; Chung YH; Sheen YY Sci Total Environ; 2007 Jan; 372(2-3):657-67. PubMed ID: 17156822 [TBL] [Abstract][Full Text] [Related]
12. Source and behavior analyses of dioxins based on congener-specific information and their application to Tokyo Bay basin. Masunaga S; Yao Y; Ogura I; Sakurai T; Nakanishi J Chemosphere; 2003 Oct; 53(4):315-24. PubMed ID: 12946390 [TBL] [Abstract][Full Text] [Related]
13. Identifying sources and mass balance of dioxin pollution in Lake Shinji Basin, Japan. Masunaga S; Yao Y; Ogura I; Nakai S; Kanai Y; Yamamuro M; Nakanishi J Environ Sci Technol; 2001 May; 35(10):1967-73. PubMed ID: 11393975 [TBL] [Abstract][Full Text] [Related]
14. Characterization and mass load estimates of organic compounds in agricultural irrigation runoff. Pedersen JA; Yeager MA; Suffet IH Water Sci Technol; 2002; 45(9):103-10. PubMed ID: 12079091 [TBL] [Abstract][Full Text] [Related]
15. Sensitivity analysis using a diffuse pollution hydrologic model to assess factors affecting pesticide concentrations in river water. Tani K; Matsui Y; Narita K; Ohno K; Matsushita T Water Sci Technol; 2010; 62(11):2579-89. PubMed ID: 21099045 [TBL] [Abstract][Full Text] [Related]
16. Mathematical model developed for environmental samples: prediction of GC/MS dioxin TEQ from XDS-CALUX bioassay data. Brown DJ; Orelien J; Gordon JD; Chu AC; Chu MD; Nakamura M; Handa H; Kayama F; Denison MS; Clark GC Environ Sci Technol; 2007 Jun; 41(12):4354-60. PubMed ID: 17626436 [TBL] [Abstract][Full Text] [Related]
17. Analysis of dioxins and furans in environmental samples by GC-ion-trap MS/MS. Fabrellas B; Sanz P; Abad E; Rivera J; Larrazábal D Chemosphere; 2004 Jun; 55(11):1469-75. PubMed ID: 15099726 [TBL] [Abstract][Full Text] [Related]
18. Dissolved organic matter from agricultural fields in the irrigation period. Shim S; Kim B; Hosoi Y; Masuda T Water Sci Technol; 2005; 52(12):233-41. PubMed ID: 16477991 [TBL] [Abstract][Full Text] [Related]
19. Analysis of dioxins in contaminated soils with the calux and caflux bioassays, an immunoassay, and gas chromatography/high-resolution mass spectrometry. Nording M; Denison MS; Baston D; Persson Y; Spinnel E; Haglund P Environ Toxicol Chem; 2007 Jun; 26(6):1122-9. PubMed ID: 17571676 [TBL] [Abstract][Full Text] [Related]
20. [Dioxins: risk management by agriculture and feed industry--options and limits]. Kamphues J; Schulz AJ Dtsch Tierarztl Wochenschr; 2006 Aug; 113(8):298-303. PubMed ID: 16955641 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]