These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

60 related articles for article (PubMed ID: 19443242)

  • 1. Interaction between elastic energy utilization and active state development within the work enhancing mechanism during countermovement.
    Arakawa H; Nagano A; Yoshioka S; Fukashiro S
    J Electromyogr Kinesiol; 2010 Apr; 20(2):340-7. PubMed ID: 19443242
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Force, work and power output of lower limb muscles during human maximal-effort countermovement jumping.
    Nagano A; Komura T; Fukashiro S; Himeno R
    J Electromyogr Kinesiol; 2005 Aug; 15(4):367-76. PubMed ID: 15811607
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Is energy expenditure taken into account in human sub-maximal jumping?--A simulation study.
    Vanrenterghem J; Bobbert MF; Casius LJ; De Clercq D
    J Electromyogr Kinesiol; 2008 Feb; 18(1):108-15. PubMed ID: 17085059
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of the length ratio between the contractile element and the series elastic element on an explosive muscular performance.
    Nagano A; Komura T; Fukashiro S
    J Electromyogr Kinesiol; 2004 Apr; 14(2):197-203. PubMed ID: 14962772
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-frequency oscillations as a consequence of neglected serial damping in Hill-type muscle models.
    Günther M; Schmitt S; Wank V
    Biol Cybern; 2007 Jul; 97(1):63-79. PubMed ID: 17598125
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonlinearities make a difference: comparison of two common Hill-type models with real muscle.
    Siebert T; Rode C; Herzog W; Till O; Blickhan R
    Biol Cybern; 2008 Feb; 98(2):133-43. PubMed ID: 18049823
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of series elasticity and activation conditions on muscle power output and efficiency.
    Lichtwark GA; Wilson AM
    J Exp Biol; 2005 Aug; 208(Pt 15):2845-53. PubMed ID: 16043589
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Muscle mechanical work and elastic energy utilization during walking and running near the preferred gait transition speed.
    Sasaki K; Neptune RR
    Gait Posture; 2006 Apr; 23(3):383-90. PubMed ID: 16029949
    [TBL] [Abstract][Full Text] [Related]  

  • 9. More is not always better: modeling the effects of elastic exoskeleton compliance on underlying ankle muscle-tendon dynamics.
    Robertson BD; Farris DJ; Sawicki GS
    Bioinspir Biomim; 2014 Nov; 9(4):046018. PubMed ID: 25417578
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Models of metabolic utilization predict limiting conditions for sustained power from conditioned skeletal muscle.
    Gustafson KJ; Marinache SM; Egrie GD; Reichenbach SH
    Ann Biomed Eng; 2006 May; 34(5):790-8. PubMed ID: 16598656
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shortening amplitude affects the incomplete force recovery after active shortening in mouse soleus muscle.
    Van Noten P; Van Leemputte M
    J Biomech; 2009 Dec; 42(16):2636-41. PubMed ID: 19783252
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of a combination of continuum and truss finite elements in a model of passive and active muscle tissue.
    Hedenstierna S; Halldin P; Brolin K
    Comput Methods Biomech Biomed Engin; 2008 Dec; 11(6):627-39. PubMed ID: 18642161
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Longer moment arm results in smaller joint moment development, power and work outputs in fast motions.
    Nagano A; Komura T
    J Biomech; 2003 Nov; 36(11):1675-81. PubMed ID: 14522209
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elastic recoil can either amplify or attenuate muscle-tendon power, depending on inertial vs. fluid dynamic loading.
    Richards CT; Sawicki GS
    J Theor Biol; 2012 Nov; 313():68-78. PubMed ID: 22898554
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Active finite element analysis of skeletal muscle-tendon complex during isometric, shortening and lengthening contraction.
    Tsui CP; Tang CY; Leung CP; Cheng KW; Ng YF; Chow DH; Li CK
    Biomed Mater Eng; 2004; 14(3):271-9. PubMed ID: 15299239
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contribution of the tendinous tissue to force enhancement during stretch-shortening cycle exercise depends on the prestretch and concentric phase intensities.
    Ishikawa M; Komi PV; Finni T; Kuitunen S
    J Electromyogr Kinesiol; 2006 Oct; 16(5):423-31. PubMed ID: 16275136
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of speed and influence of individual muscles on hamstring mechanics during the swing phase of sprinting.
    Chumanov ES; Heiderscheit BC; Thelen DG
    J Biomech; 2007; 40(16):3555-62. PubMed ID: 17659291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A model of human muscle energy expenditure.
    Umberger BR; Gerritsen KG; Martin PE
    Comput Methods Biomech Biomed Engin; 2003 Apr; 6(2):99-111. PubMed ID: 12745424
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulation of active skeletal muscle tissue with a transversely isotropic viscohyperelastic continuum material model.
    Khodaei H; Mostofizadeh S; Brolin K; Johansson H; Osth J
    Proc Inst Mech Eng H; 2013 May; 227(5):571-80. PubMed ID: 23637267
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Frequency-dependent power output and skeletal muscle design.
    Medler S; Hulme K
    Comp Biochem Physiol A Mol Integr Physiol; 2009 Mar; 152(3):407-17. PubMed ID: 19101645
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.