These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
74 related articles for article (PubMed ID: 1944334)
41. Mrc1 and DNA polymerase epsilon function together in linking DNA replication and the S phase checkpoint. Lou H; Komata M; Katou Y; Guan Z; Reis CC; Budd M; Shirahige K; Campbell JL Mol Cell; 2008 Oct; 32(1):106-17. PubMed ID: 18851837 [TBL] [Abstract][Full Text] [Related]
42. Expression, purification, and characterization of the two human primase subunits and truncated complexes from Escherichia coli. Copeland WC Protein Expr Purif; 1997 Feb; 9(1):1-9. PubMed ID: 9116489 [TBL] [Abstract][Full Text] [Related]
43. DNA polymerase II (epsilon) of Saccharomyces cerevisiae dissociates from the DNA template by sensing single-stranded DNA. Maki S; Hashimoto K; Ohara T; Sugino A J Biol Chem; 1998 Aug; 273(33):21332-41. PubMed ID: 9694894 [TBL] [Abstract][Full Text] [Related]
44. The RFC2 gene encoding a subunit of replication factor C of Saccharomyces cerevisiae. Noskov V; Maki S; Kawasaki Y; Leem SH; Ono B; Araki H; Pavlov Y; Sugino A Nucleic Acids Res; 1994 May; 22(9):1527-35. PubMed ID: 8202350 [TBL] [Abstract][Full Text] [Related]
45. Thymine-thymine dimer bypass by yeast DNA polymerase zeta. Nelson JR; Lawrence CW; Hinkle DC Science; 1996 Jun; 272(5268):1646-9. PubMed ID: 8658138 [TBL] [Abstract][Full Text] [Related]
46. Cloning DPB3, the gene encoding the third subunit of DNA polymerase II of Saccharomyces cerevisiae. Araki H; Hamatake RK; Morrison A; Johnson AL; Johnston LH; Sugino A Nucleic Acids Res; 1991 Sep; 19(18):4867-72. PubMed ID: 1923754 [TBL] [Abstract][Full Text] [Related]
47. DNA polymerase alpha-primase complexes from carcinogen-treated Chinese hamster ovary cells. Brucker A; Loeb LA; Thielmann HW Cancer Res; 1990 Nov; 50(21):6894-901. PubMed ID: 2170009 [TBL] [Abstract][Full Text] [Related]
48. Frameshift fidelity during replication of double-stranded DNA in HeLa cell extracts. Roberts JD; Nguyen D; Kunkel TA Biochemistry; 1993 Apr; 32(15):4083-9. PubMed ID: 8385995 [TBL] [Abstract][Full Text] [Related]
49. Amino and carboxy-terminal extensions of yeast mitochondrial DNA polymerase assemble both the polymerization and exonuclease active sites. Trasviña-Arenas CH; Hoyos-Gonzalez N; Castro-Lara AY; Rodriguez-Hernandez A; Sanchez-Sandoval ME; Jimenez-Sandoval P; Ayala-García VM; Díaz-Quezada C; Lodi T; Baruffini E; Brieba LG Mitochondrion; 2019 Nov; 49():166-177. PubMed ID: 31445096 [TBL] [Abstract][Full Text] [Related]
50. Enhanced polymerase activity permits efficient synthesis by cancer-associated DNA polymerase ϵ variants at low dNTP levels. Barbari SR; Beach AK; Markgren JG; Parkash V; Moore EA; Johansson E; Shcherbakova PV Nucleic Acids Res; 2022 Aug; 50(14):8023-8040. PubMed ID: 35822874 [TBL] [Abstract][Full Text] [Related]
51. Crystal structure of yeast DNA polymerase ε catalytic domain. Jain R; Rajashankar KR; Buku A; Johnson RE; Prakash L; Prakash S; Aggarwal AK PLoS One; 2014; 9(4):e94835. PubMed ID: 24733111 [TBL] [Abstract][Full Text] [Related]
52. DNA polymerase alpha from HeLa cells synthesizes DNA with high fidelity in a reconstituted replication system. Carty MP; Ishimi Y; Levine AS; Dixon K Mutat Res; 1990 Oct; 232(2):141-53. PubMed ID: 2215524 [TBL] [Abstract][Full Text] [Related]
53. Fidelity of a Bacterial DNA Polymerase in Microgravity, a Model for Human Health in Space. Rosenstein AH; Walker VK Front Cell Dev Biol; 2021; 9():702849. PubMed ID: 34912795 [TBL] [Abstract][Full Text] [Related]
54. Human DNA polymerase α has a strong mutagenic potential at the initial steps of DNA synthesis. Lisova AE; Baranovskiy AG; Morstadt LM; Babayeva ND; Tahirov TH Nucleic Acids Res; 2022 Nov; 50(21):12266-12273. PubMed ID: 36454017 [TBL] [Abstract][Full Text] [Related]
55. Activity and fidelity of human DNA polymerase α depend on primer structure. Baranovskiy AG; Duong VN; Babayeva ND; Zhang Y; Pavlov YI; Anderson KS; Tahirov TH J Biol Chem; 2018 May; 293(18):6824-6843. PubMed ID: 29555682 [TBL] [Abstract][Full Text] [Related]
56. Biochemical analysis of DNA polymerase η fidelity in the presence of replication protein A. Suarez SC; Toffton SM; McCulloch SD PLoS One; 2014; 9(5):e97382. PubMed ID: 24824831 [TBL] [Abstract][Full Text] [Related]
57. The rate and spectrum of microsatellite mutation in Caenorhabditis elegans and Daphnia pulex. Seyfert AL; Cristescu ME; Frisse L; Schaack S; Thomas WK; Lynch M Genetics; 2008 Apr; 178(4):2113-21. PubMed ID: 18430937 [TBL] [Abstract][Full Text] [Related]
58. Processivity clamp gp45 and ssDNA-binding-protein gp32 modulate the fidelity of bacteriophage RB69 DNA polymerase in a sequence-specific manner, sometimes enhancing and sometimes compromising accuracy. Bebenek A; Carver GT; Kadyrov FA; Kissling GE; Drake JW Genetics; 2005 Apr; 169(4):1815-24. PubMed ID: 15695359 [TBL] [Abstract][Full Text] [Related]
59. Retention of replication fidelity by a DNA polymerase functioning in a distantly related environment. Dressman HK; Wang CC; Karam JD; Drake JW Proc Natl Acad Sci U S A; 1997 Jul; 94(15):8042-6. PubMed ID: 9223311 [TBL] [Abstract][Full Text] [Related]
60. The fidelity of DNA synthesis by the catalytic subunit of yeast DNA polymerase alpha alone and with accessory proteins. Kunkel TA; Roberts JD; Sugino A Mutat Res; 1991; 250(1-2):175-82. PubMed ID: 1944334 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]