BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 19443543)

  • 1. Enhanced citric acid biosynthesis in Pseudomonas fluorescens ATCC 13525 by overexpression of the Escherichia coli citrate synthase gene.
    Buch AD; Archana G; Kumar GN
    Microbiology (Reading); 2009 Aug; 155(Pt 8):2620-2629. PubMed ID: 19443543
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heterologous expression of phosphoenolpyruvate carboxylase enhances the phosphate solubilizing ability of fluorescent pseudomonads by altering the glucose catabolism to improve biomass yield.
    Buch A; Archana G; Naresh Kumar G
    Bioresour Technol; 2010 Jan; 101(2):679-87. PubMed ID: 19767200
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Broad-host-range plasmid-mediated metabolic perturbations in Pseudomonas fluorescens 13525.
    Buch AD; Archana G; Naresh Kumar G
    Appl Microbiol Biotechnol; 2010 Sep; 88(1):209-18. PubMed ID: 20571795
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Artificial citrate operon confers mineral phosphate solubilization ability to diverse fluorescent pseudomonads.
    Adhikary H; Sanghavi PB; Macwan SR; Archana G; Naresh Kumar G
    PLoS One; 2014; 9(9):e107554. PubMed ID: 25259527
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel metabolic network leads to enhanced citrate biogenesis in Pseudomonas fluorescens exposed to aluminum toxicity.
    Mailloux RJ; Lemire J; Kalyuzhnyi S; Appanna V
    Extremophiles; 2008 May; 12(3):451-9. PubMed ID: 18335165
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catabolite regulation analysis of Escherichia coli for acetate overflow mechanism and co-consumption of multiple sugars based on systems biology approach using computer simulation.
    Matsuoka Y; Shimizu K
    J Biotechnol; 2013 Oct; 168(2):155-73. PubMed ID: 23850830
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptation of Pseudomonas fluorescens to Al-citrate: involvement of tricarboxylic acid and glyoxylate cycle enzymes and the influence of phosphate.
    Appanna VD; Hamel R; Mackenzie C; Kumar P; Kalyuzhnyi SV
    Curr Microbiol; 2003 Dec; 47(6):521-7. PubMed ID: 14756538
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compensatory regulation in metabolic pathways--responses to increases and decreases in citrate synthase levels.
    Walsh K; Schena M; Flint AJ; Koshland DE
    Biochem Soc Symp; 1987; 54():183-95. PubMed ID: 3332995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isotopomer analysis of citric acid cycle and gluconeogenesis in rat liver. Reversibility of isocitrate dehydrogenase and involvement of ATP-citrate lyase in gluconeogenesis.
    Des Rosiers C; Di Donato L; Comte B; Laplante A; Marcoux C; David F; Fernandez CA; Brunengraber H
    J Biol Chem; 1995 Apr; 270(17):10027-36. PubMed ID: 7730304
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Enzymatic study of citrate-isocitrate accumulation in yeast with glucose as the carbon source].
    Franke-Rinker D; Behrens U; Nöckel E
    Z Allg Mikrobiol; 1983; 23(2):75-80. PubMed ID: 6868652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of enzymes of the tricarboxylic acid cycle in Bacillus subtilis and Escherichia coli: a comparative study.
    Jung T; Mack M
    FEMS Microbiol Lett; 2018 Apr; 365(8):. PubMed ID: 29546354
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic characterisation of E. coli citrate synthase and phosphoenolpyruvate carboxylase mutants in aerobic cultures.
    De Maeseneire SL; De Mey M; Vandedrinck S; Vandamme EJ
    Biotechnol Lett; 2006 Dec; 28(23):1945-53. PubMed ID: 17028777
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Global metabolic response of Escherichia coli to gnd or zwf gene-knockout, based on 13C-labeling experiments and the measurement of enzyme activities.
    Zhao J; Baba T; Mori H; Shimizu K
    Appl Microbiol Biotechnol; 2004 Mar; 64(1):91-8. PubMed ID: 14661115
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The metabolism of aluminum citrate and biosynthesis of oxalic acid in Pseudomonas fluorescens.
    Appanna VD; Hamel RD; Lévasseur R
    Curr Microbiol; 2003 Jul; 47(1):32-9. PubMed ID: 12783190
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Improving glycolic acid yield by metabolic engineering in Escherichia coli].
    Ma N; Zhu K; Mao Y; Deng Y
    Sheng Wu Gong Cheng Xue Bao; 2018 Feb; 34(2):224-234. PubMed ID: 29424136
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Branch point control by the phosphorylation state of isocitrate dehydrogenase. A quantitative examination of fluxes during a regulatory transition.
    Walsh K; Koshland DE
    J Biol Chem; 1985 Jul; 260(14):8430-7. PubMed ID: 2861202
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic channeling of glucose towards gluconate in phosphate-solubilizing Pseudomonas aeruginosa P4 under phosphorus deficiency.
    Buch A; Archana G; Naresh Kumar G
    Res Microbiol; 2008; 159(9-10):635-42. PubMed ID: 18996187
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alteration of growth yield by overexpression of phosphoenolpyruvate carboxylase and phosphoenolpyruvate carboxykinase in Escherichia coli.
    Chao YP; Liao JC
    Appl Environ Microbiol; 1993 Dec; 59(12):4261-5. PubMed ID: 8285716
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Metabolism of a psychrophilic bacterium from fresh water].
    de Forchetti SR; Forchetti O; Juan SM; Higa AI; González A; Parada JL; Cazzuio JJ
    Rev Asoc Argent Microbiol; 1975; 7(3):97-107. PubMed ID: 824689
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Zinc toxicity and ATP production in Pseudomonas fluorescens.
    Alhasawi A; Auger C; Appanna VP; Chahma M; Appanna VD
    J Appl Microbiol; 2014 Jul; 117(1):65-73. PubMed ID: 24629129
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.