These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 19443718)

  • 41. Differences in Optical Coherence Tomography Assessment of Bruch Membrane Opening Compared to Stereoscopic Photography for Estimating Cup-to-Disc Ratio.
    Mwanza JC; Huang LY; Budenz DL; Shi W; Huang G; Lee RK
    Am J Ophthalmol; 2017 Dec; 184():34-41. PubMed ID: 28964804
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Combined use of Doppler OCT and en face OCT functions for discrimination of an aneurysm in the lamina cribrosa from a disc hemorrhage.
    Holló G
    Eur J Ophthalmol; 2015 Dec; 26(1):e8-10. PubMed ID: 26350995
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Retinal nerve fibre layer thickness profile in normal eyes using third-generation optical coherence tomography.
    Skaf M; Bernardes AB; Cardillo JA; Costa RA; Melo LA; Castro JC; Varma R
    Eye (Lond); 2006 Apr; 20(4):431-9. PubMed ID: 16052259
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cross-sectional anatomic configurations of peripapillary atrophy evaluated with spectral domain-optical coherence tomography.
    Lee KY; Tomidokoro A; Sakata R; Konno S; Mayama C; Saito H; Hayashi K; Iwase A; Araie M
    Invest Ophthalmol Vis Sci; 2010 Feb; 51(2):666-71. PubMed ID: 19850838
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Measurement of optic nerve head parameters: comparison of optical coherence tomography with digital planimetry.
    Samarawickrama C; Pai A; Huynh SC; Burlutsky G; Jonas JB; Mitchell P
    J Glaucoma; 2009; 18(8):571-5. PubMed ID: 19826383
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Lamina Cribrosa Depth Variation Measured by Spectral-Domain Optical Coherence Tomography Within and Between Four Glaucomatous Optic Disc Phenotypes.
    Sawada Y; Hangai M; Murata K; Ishikawa M; Yoshitomi T
    Invest Ophthalmol Vis Sci; 2015 Sep; 56(10):5777-84. PubMed ID: 26325416
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Optical coherence tomography study of peripapillary retinal nerve fiber layer and choroidal thickness in eyes with tilted optic disc.
    Brito PN; Vieira MP; Falcão MS; Faria OS; Falcão-Reis F
    J Glaucoma; 2015 Jan; 24(1):45-50. PubMed ID: 23429636
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Combined in-depth, 3D, en face imaging of the optic disc, optic disc pits and optic disc pit maculopathy using swept-source megahertz OCT at 1050 nm.
    Maertz J; Kolb JP; Klein T; Mohler KJ; Eibl M; Wieser W; Huber R; Priglinger S; Wolf A
    Graefes Arch Clin Exp Ophthalmol; 2018 Feb; 256(2):289-298. PubMed ID: 29238852
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The Relationship of the Clinical Disc Margin and Bruch's Membrane Opening in Normal and Glaucoma Subjects.
    Amini N; Miraftabi A; Henry S; Chung N; Nowroozizadeh S; Caprioli J; Nouri-Mahdavi K
    Invest Ophthalmol Vis Sci; 2016 Mar; 57(3):1468-75. PubMed ID: 27031840
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Evaluation of the influence of tilt of optic disc on the measurement of optic disc variables obtained by optical coherence tomography and confocal scanning laser ophthalmoscopy.
    Park CY; Kim YT; Kee C
    J Glaucoma; 2005 Jun; 14(3):210-4. PubMed ID: 15870603
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Comparison of optic disc parameters using spectral domain cirrus high-definition optical coherence tomography and confocal scanning laser ophthalmoscopy in normal eyes.
    Resch H; Deak G; Pereira I; Vass C
    Acta Ophthalmol; 2012 May; 90(3):e225-9. PubMed ID: 22458635
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Comparison of the optic nerve imaging by time-domain optical coherence tomography and Fourier-domain optical coherence tomography in distinguishing normal eyes from those with glaucoma.
    Kim NR; Kim JH; Kim CY; Jun I; Seong GJ; Lee ES
    J Glaucoma; 2013 Jan; 22(1):36-43. PubMed ID: 21623218
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Differentiation of parapapillary atrophy using spectral-domain optical coherence tomography.
    Kim M; Kim TW; Weinreb RN; Lee EJ
    Ophthalmology; 2013 Sep; 120(9):1790-7. PubMed ID: 23672970
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Optic disc and peripapillary retinal nerve fiber layer characteristics associated with glaucomatous optic disc in young myopia.
    Lee JE; Sung KR; Park JM; Yoon JY; Kang SY; Park SB; Koo HJ
    Graefes Arch Clin Exp Ophthalmol; 2017 Mar; 255(3):591-598. PubMed ID: 27837279
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A Novel Method for Assessing Lamina Cribrosa Structure Ex Vivo Using Anterior Segment Enhanced Depth Imaging Optical Coherence Tomography.
    Chien JL; Ghassibi MP; Mahadeshwar P; Li P; Liebmann JM; Ritch R; Milman T; Park SC
    J Glaucoma; 2017 Jul; 26(7):626-632. PubMed ID: 28486274
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A machine-learning graph-based approach for 3D segmentation of Bruch's membrane opening from glaucomatous SD-OCT volumes.
    Miri MS; Abràmoff MD; Kwon YH; Sonka M; Garvin MK
    Med Image Anal; 2017 Jul; 39():206-217. PubMed ID: 28528295
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Optical coherence tomography shape analysis of the peripapillary retinal pigment epithelium layer in presumed optic nerve sheath meningiomas.
    Sibony P; Strachovsky M; Honkanen R; Kupersmith MJ
    J Neuroophthalmol; 2014 Jun; 34(2):130-6. PubMed ID: 24625774
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Myopic optic disc tilt and the characteristics of peripapillary retinal nerve fiber layer thickness measured by spectral-domain optical coherence tomography.
    Hwang YH; Yoo C; Kim YY
    J Glaucoma; 2012; 21(4):260-5. PubMed ID: 21623226
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Comparison of optical coherence tomography and fundus photography for measuring the optic disc size.
    Neubauer AS; Krieglstein TR; Chryssafis C; Thiel M; Kampik A
    Ophthalmic Physiol Opt; 2006 Jan; 26(1):13-8. PubMed ID: 16390477
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Detection of Progressive Glaucomatous Optic Nerve Damage on Fundus Photographs with Deep Learning.
    Medeiros FA; Jammal AA; Mariottoni EB
    Ophthalmology; 2021 Mar; 128(3):383-392. PubMed ID: 32735906
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.