BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 19443721)

  • 1. Plasminogen activator inhibitor-1 (PAI-1) facilitates retinal angiogenesis in a model of oxygen-induced retinopathy.
    Basu A; Menicucci G; Maestas J; Das A; McGuire P
    Invest Ophthalmol Vis Sci; 2009 Oct; 50(10):4974-81. PubMed ID: 19443721
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The urokinase/urokinase receptor system in retinal neovascularization: inhibition by A6 suggests a new therapeutic target.
    McGuire PG; Jones TR; Talarico N; Warren E; Das A
    Invest Ophthalmol Vis Sci; 2003 Jun; 44(6):2736-42. PubMed ID: 12766081
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hepatocyte growth factor/scatter factor promotes retinal angiogenesis through increased urokinase expression.
    Colombo ES; Menicucci G; McGuire PG; Das A
    Invest Ophthalmol Vis Sci; 2007 Apr; 48(4):1793-800. PubMed ID: 17389513
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Soluble forms of EphrinB2 and EphB4 reduce retinal neovascularization in a model of proliferative retinopathy.
    Zamora DO; Davies MH; Planck SR; Rosenbaum JT; Powers MR
    Invest Ophthalmol Vis Sci; 2005 Jun; 46(6):2175-82. PubMed ID: 15914639
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression and activation of STAT3 in ischemia-induced retinopathy.
    Mechoulam H; Pierce EA
    Invest Ophthalmol Vis Sci; 2005 Dec; 46(12):4409-16. PubMed ID: 16303927
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cysteine-rich 61, a member of the CCN family, as a factor involved in the pathogenesis of proliferative diabetic retinopathy.
    You JJ; Yang CH; Chen MS; Yang CM
    Invest Ophthalmol Vis Sci; 2009 Jul; 50(7):3447-55. PubMed ID: 19264885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of vitronectin receptor-type integrins and osteopontin in ischemia-induced retinal neovascularization.
    Takagi H; Suzuma K; Otani A; Oh H; Koyama S; Ohashi H; Watanabe D; Ojima T; Suganami E; Honda Y
    Jpn J Ophthalmol; 2002; 46(3):270-8. PubMed ID: 12063036
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fractalkine, a CX3C chemokine, as a mediator of ocular angiogenesis.
    You JJ; Yang CH; Huang JS; Chen MS; Yang CM
    Invest Ophthalmol Vis Sci; 2007 Nov; 48(11):5290-8. PubMed ID: 17962485
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ICAM-1 depletion does not alter retinal vascular development in a model of oxygen-mediated neovascularization.
    Kociok N; Radetzky S; Krohne TU; Gavranic C; Liang Y; Semkova I; Joussen AM
    Exp Eye Res; 2009 Oct; 89(4):503-10. PubMed ID: 19482023
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aquaporin-1 independent microvessel proliferation in a neonatal mouse model of oxygen-induced retinopathy.
    Ruiz-Ederra J; Verkman AS
    Invest Ophthalmol Vis Sci; 2007 Oct; 48(10):4802-10. PubMed ID: 17898307
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Retinal vascular leakage occurring in GABA Rho-1 subunit deficient mice.
    Zheng W; Zhao X; Wang J; Lu L
    Exp Eye Res; 2010 May; 90(5):634-40. PubMed ID: 20193681
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ocular wounding prevents pre-retinal neovascularization and upregulates PEDF expression in the inner retina.
    Stitt AW; Graham D; Gardiner TA
    Mol Vis; 2004 Jun; 10():432-8. PubMed ID: 15235573
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thioredoxin-interacting protein deficiency ameliorates diabetic retinal angiogenesis.
    Duan J; Du C; Shi Y; Liu D; Ma J
    Int J Biochem Cell Biol; 2018 Jan; 94():61-70. PubMed ID: 29203232
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of pathological retinal angiogenesis by the integrin αvβ3 antagonist tetraiodothyroacetic acid (tetrac).
    Yoshida T; Gong J; Xu Z; Wei Y; Duh EJ
    Exp Eye Res; 2012 Jan; 94(1):41-8. PubMed ID: 22123068
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ghrelin modulates physiologic and pathologic retinal angiogenesis through GHSR-1a.
    Zaniolo K; Sapieha P; Shao Z; Stahl A; Zhu T; Tremblay S; Picard E; Madaan A; Blais M; Lachapelle P; Mancini J; Hardy P; Smith LE; Ong H; Chemtob S
    Invest Ophthalmol Vis Sci; 2011 Jul; 52(8):5376-86. PubMed ID: 21642627
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neuronal-driven angiogenesis: role of NGF in retinal neovascularization in an oxygen-induced retinopathy model.
    Liu X; Wang D; Liu Y; Luo Y; Ma W; Xiao W; Yu Q
    Invest Ophthalmol Vis Sci; 2010 Jul; 51(7):3749-57. PubMed ID: 20207957
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Guibi-Tang, a Traditional Herbal Formula, on Retinal Neovascularization in a Mouse Model of Proliferative Retinopathy.
    Lee YM; Lee YR; Kim CS; Jo K; Sohn E; Kim JS; Kim J
    Int J Mol Sci; 2015 Dec; 16(12):29900-10. PubMed ID: 26694358
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Suppression of retinal neovascularization by erythropoietin siRNA in a mouse model of proliferative retinopathy.
    Chen J; Connor KM; Aderman CM; Willett KL; Aspegren OP; Smith LE
    Invest Ophthalmol Vis Sci; 2009 Mar; 50(3):1329-35. PubMed ID: 18952918
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression of VLDLR in the retina and evolution of subretinal neovascularization in the knockout mouse model's retinal angiomatous proliferation.
    Hu W; Jiang A; Liang J; Meng H; Chang B; Gao H; Qiao X
    Invest Ophthalmol Vis Sci; 2008 Jan; 49(1):407-15. PubMed ID: 18172119
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hyperoxia therapy of pre-proliferative ischemic retinopathy in a mouse model.
    Zhang W; Yokota H; Xu Z; Narayanan SP; Yancey L; Yoshida A; Marcus DM; Caldwell RW; Caldwell RB; Brooks SE
    Invest Ophthalmol Vis Sci; 2011 Aug; 52(9):6384-95. PubMed ID: 21705685
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.