These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 19443779)

  • 21. Activity-dependent Wnt 7 dendritic targeting in hippocampal neurons: plasticity- and tagging-related retrograde signaling mechanism?
    Tabatadze N; McGonigal R; Neve RL; Routtenberg A
    Hippocampus; 2014 Apr; 24(4):455-65. PubMed ID: 24375790
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Regulation of the level of Vesl-1S/Homer-1a proteins by ubiquitin-proteasome proteolytic systems.
    Ageta H; Kato A; Hatakeyama S; Nakayama K; Isojima Y; Sugiyama H
    J Biol Chem; 2001 May; 276(19):15893-7. PubMed ID: 11278836
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Activity-dependent plasticity of the NMDA-receptor fractional Ca2+ current.
    Sobczyk A; Svoboda K
    Neuron; 2007 Jan; 53(1):17-24. PubMed ID: 17196527
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Activity-regulated N-cadherin endocytosis.
    Tai CY; Mysore SP; Chiu C; Schuman EM
    Neuron; 2007 Jun; 54(5):771-85. PubMed ID: 17553425
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Calcium-triggered exit of F-actin and IP(3) 3-kinase A from dendritic spines is rapid and reversible.
    Schell MJ; Irvine RF
    Eur J Neurosci; 2006 Nov; 24(9):2491-503. PubMed ID: 17100838
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Activity-dependent dynamics and sequestration of proteasomes in dendritic spines.
    Bingol B; Schuman EM
    Nature; 2006 Jun; 441(7097):1144-8. PubMed ID: 16810255
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Abundant distribution of TARP gamma-8 in synaptic and extrasynaptic surface of hippocampal neurons and its major role in AMPA receptor expression on spines and dendrites.
    Fukaya M; Tsujita M; Yamazaki M; Kushiya E; Abe M; Akashi K; Natsume R; Kano M; Kamiya H; Watanabe M; Sakimura K
    Eur J Neurosci; 2006 Oct; 24(8):2177-90. PubMed ID: 17074043
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Temporal dynamics of NMDA receptor-induced changes in spine morphology and AMPA receptor recruitment to spines.
    Lin H; Huganir R; Liao D
    Biochem Biophys Res Commun; 2004 Apr; 316(2):501-11. PubMed ID: 15020245
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Differential up-regulation of Vesl-1/Homer 1 protein isoforms associated with decline in visual performance in a preclinical glaucoma model.
    Kaja S; Naumchuk Y; Grillo SL; Borden PK; Koulen P
    Vision Res; 2014 Jan; 94():16-23. PubMed ID: 24219919
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses.
    Li Z; Okamoto K; Hayashi Y; Sheng M
    Cell; 2004 Dec; 119(6):873-87. PubMed ID: 15607982
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Formation and Maintenance of Functional Spines in the Absence of Presynaptic Glutamate Release.
    Sigler A; Oh WC; Imig C; Altas B; Kawabe H; Cooper BH; Kwon HB; Rhee JS; Brose N
    Neuron; 2017 Apr; 94(2):304-311.e4. PubMed ID: 28426965
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Recent advances in understanding the roles of Cdk5 in synaptic plasticity.
    Lai KO; Ip NY
    Biochim Biophys Acta; 2009 Aug; 1792(8):741-5. PubMed ID: 19442718
    [TBL] [Abstract][Full Text] [Related]  

  • 33. SK channels and NMDA receptors form a Ca2+-mediated feedback loop in dendritic spines.
    Ngo-Anh TJ; Bloodgood BL; Lin M; Sabatini BL; Maylie J; Adelman JP
    Nat Neurosci; 2005 May; 8(5):642-9. PubMed ID: 15852011
    [TBL] [Abstract][Full Text] [Related]  

  • 34. NMDA receptor triggered molecular cascade underlies compression-induced rapid dendritic spine plasticity in cortical neurons.
    Chen LJ; Wang YJ; Chen JR; Tseng GF
    Exp Neurol; 2015 Apr; 266():86-98. PubMed ID: 25708984
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rapid turnover of actin in dendritic spines and its regulation by activity.
    Star EN; Kwiatkowski DJ; Murthy VN
    Nat Neurosci; 2002 Mar; 5(3):239-46. PubMed ID: 11850630
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Neurone specific regulation of dendritic spines in vivo by post synaptic density 95 protein (PSD-95).
    Vickers CA; Stephens B; Bowen J; Arbuthnott GW; Grant SG; Ingham CA
    Brain Res; 2006 May; 1090(1):89-98. PubMed ID: 16677619
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synaptic calcium transients in single spines indicate that NMDA receptors are not saturated.
    Mainen ZF; Malinow R; Svoboda K
    Nature; 1999 May; 399(6732):151-5. PubMed ID: 10335844
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cadherin activity is required for activity-induced spine remodeling.
    Okamura K; Tanaka H; Yagita Y; Saeki Y; Taguchi A; Hiraoka Y; Zeng LH; Colman DR; Miki N
    J Cell Biol; 2004 Dec; 167(5):961-72. PubMed ID: 15569714
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Contacts among non-sister dendritic branches at bifurcations shape neighboring dendrites and pattern their synaptic inputs.
    Cove J; Blinder P; Baranes D
    Brain Res; 2009 Jan; 1251():30-41. PubMed ID: 19046952
    [TBL] [Abstract][Full Text] [Related]  

  • 40. NMDA receptor-dependent activation of the small GTPase Rab5 drives the removal of synaptic AMPA receptors during hippocampal LTD.
    Brown TC; Tran IC; Backos DS; Esteban JA
    Neuron; 2005 Jan; 45(1):81-94. PubMed ID: 15629704
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.