BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 19444328)

  • 1. Patient-specific artery shrinkage and 3D zero-stress state in multi-component 3D FSI models for carotid atherosclerotic plaques based on in vivo MRI data.
    Huang X; Yang C; Yuan C; Liu F; Canton G; Zheng J; Woodard PK; Sicard GA; Tang D
    Mol Cell Biomech; 2009 Jun; 6(2):121-34. PubMed ID: 19444328
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D MRI-based multicomponent FSI models for atherosclerotic plaques.
    Tang D; Yang C; Zheng J; Woodard PK; Sicard GA; Saffitz JE; Yuan C
    Ann Biomed Eng; 2004 Jul; 32(7):947-60. PubMed ID: 15298432
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using in vivo Cine and 3D multi-contrast MRI to determine human atherosclerotic carotid artery material properties and circumferential shrinkage rate and their impact on stress/strain predictions.
    Liu H; Canton G; Yuan C; Yang C; Billiar K; Teng Z; Hoffman AH; Tang D
    J Biomech Eng; 2012 Jan; 134(1):011008. PubMed ID: 22482663
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D MRI-based anisotropic FSI models with cyclic bending for human coronary atherosclerotic plaque mechanical analysis.
    Tang D; Yang C; Kobayashi S; Zheng J; Woodard PK; Teng Z; Billiar K; Bach R; Ku DN
    J Biomech Eng; 2009 Jun; 131(6):061010. PubMed ID: 19449964
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D critical plaque wall stress is a better predictor of carotid plaque rupture sites than flow shear stress: An in vivo MRI-based 3D FSI study.
    Teng Z; Canton G; Yuan C; Ferguson M; Yang C; Huang X; Zheng J; Woodard PK; Tang D
    J Biomech Eng; 2010 Mar; 132(3):031007. PubMed ID: 20459195
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of Residual Stress, Axial Stretch, and Circumferential Shrinkage on Coronary Plaque Stress and Strain Calculations: A Modeling Study Using IVUS-Based Near-Idealized Geometries.
    Wang L; Zhu J; Samady H; Monoly D; Zheng J; Guo X; Maehara A; Yang C; Ma G; Mintz GS; Tang D
    J Biomech Eng; 2017 Jan; 139(1):0145011-01450111. PubMed ID: 27814429
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of computational strategy on prediction of mechanical stress in carotid atherosclerotic plaques: comparison of 2D structure-only, 3D structure-only, one-way and fully coupled fluid-structure interaction analyses.
    Huang Y; Teng Z; Sadat U; Graves MJ; Bennett MR; Gillard JH
    J Biomech; 2014 Apr; 47(6):1465-71. PubMed ID: 24529358
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sites of rupture in human atherosclerotic carotid plaques are associated with high structural stresses: an in vivo MRI-based 3D fluid-structure interaction study.
    Tang D; Teng Z; Canton G; Yang C; Ferguson M; Huang X; Zheng J; Woodard PK; Yuan C
    Stroke; 2009 Oct; 40(10):3258-63. PubMed ID: 19628799
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A negative correlation between human carotid atherosclerotic plaque progression and plaque wall stress: in vivo MRI-based 2D/3D FSI models.
    Tang D; Yang C; Mondal S; Liu F; Canton G; Hatsukami TS; Yuan C
    J Biomech; 2008; 41(4):727-36. PubMed ID: 18191138
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the atherosclerotic carotid bifurcation using MRI, finite element modeling, and histology.
    Kaazempur-Mofrad MR; Isasi AG; Younis HF; Chan RC; Hinton DP; Sukhova G; LaMuraglia GM; Lee RT; Kamm RD
    Ann Biomed Eng; 2004 Jul; 32(7):932-46. PubMed ID: 15298431
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Local critical stress correlates better than global maximum stress with plaque morphological features linked to atherosclerotic plaque vulnerability: an in vivo multi-patient study.
    Tang D; Teng Z; Canton G; Hatsukami TS; Dong L; Huang X; Yuan C
    Biomed Eng Online; 2009 Aug; 8():15. PubMed ID: 19650901
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cyclic Bending Contributes to High Stress in a Human Coronary Atherosclerotic Plaque and Rupture Risk: In Vitro Experimental Modeling and Ex Vivo MRI-Based Computational Modeling Approach.
    Yang C; Tang D; Kobayashi S; Zheng J; Woodard PK; Teng Z; Bach R; Ku DN
    Mol Cell Biomech; 2008; 5(4):259-274. PubMed ID: 19412353
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rupture Risk Assessment of Cervical Spinal Manipulations on Carotid Atherosclerotic Plaque by a 3D Fluid-Structure Interaction Model.
    Chen Y; Zhang S; Chen Y; Lao Y; Huang X; Huang X; Liao Q; Li Y
    Biomed Res Int; 2021; 2021():8239326. PubMed ID: 33490277
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Case Report: Evaluating Biomechanical Risk Factors in Carotid Stenosis by Patient-Specific Fluid-Structural Interaction Biomechanical Analysis.
    Wang J; Mendieta JB; Paritala PK; Xiang Y; Raffel OC; McGahan T; Lloyd T; Li Z
    Cerebrovasc Dis; 2021; 50(3):262-269. PubMed ID: 33744885
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-patient study for coronary vulnerable plaque model comparisons: 2D/3D and fluid-structure interaction simulations.
    Wang Q; Tang D; Wang L; Meahara A; Molony D; Samady H; Zheng J; Mintz GS; Stone GW; Giddens DP
    Biomech Model Mechanobiol; 2021 Aug; 20(4):1383-1397. PubMed ID: 33759037
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Subject-Specific Fully-Coupled and One-Way Fluid-Structure Interaction Models for Modeling of Carotid Atherosclerotic Plaques in Humans.
    Tao X; Gao P; Jing L; Lin Y; Sui B
    Med Sci Monit; 2015 Oct; 21():3279-90. PubMed ID: 26510514
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of inaccuracies in carotid MRI segmentation on atherosclerotic plaque stress computations.
    Nieuwstadt HA; Speelman L; Breeuwer M; van der Lugt A; van der Steen AF; Wentzel JJ; Gijsen FJ
    J Biomech Eng; 2014 Feb; 136(2):021015. PubMed ID: 24317274
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MRI-based patient-specific human carotid atherosclerotic vessel material property variations in patients, vessel location and long-term follow up.
    Wang Q; Canton G; Guo J; Guo X; Hatsukami TS; Billiar KL; Yuan C; Wu Z; Tang D
    PLoS One; 2017; 12(7):e0180829. PubMed ID: 28715441
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantify patient-specific coronary material property and its impact on stress/strain calculations using in vivo IVUS data and 3D FSI models: a pilot study.
    Guo X; Zhu J; Maehara A; Monoly D; Samady H; Wang L; Billiar KL; Zheng J; Yang C; Mintz GS; Giddens DP; Tang D
    Biomech Model Mechanobiol; 2017 Feb; 16(1):333-344. PubMed ID: 27561649
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantifying effects of plaque structure and material properties on stress distributions in human atherosclerotic plaques using 3D FSI models.
    Tang D; Yang C; Zheng J; Woodard PK; Saffitz JE; Sicard GA; Pilgram TK; Yuan C
    J Biomech Eng; 2005 Dec; 127(7):1185-94. PubMed ID: 16502661
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.