These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 19444964)
61. Molecular mechanisms of acid-base sensing by the kidney. Brown D; Wagner CA J Am Soc Nephrol; 2012 May; 23(5):774-80. PubMed ID: 22362904 [TBL] [Abstract][Full Text] [Related]
63. Renal tubular sodium and water reabsorption in the isotonic sodium chloride-loaded rat. Landwehr DM; Klose RM; Giebisch G Am J Physiol; 1967 Jun; 212(6):1327-33. PubMed ID: 4952121 [No Abstract] [Full Text] [Related]
64. High glucose transactivates the EGF receptor and up-regulates serum glucocorticoid kinase in the proximal tubule. Saad S; Stevens VA; Wassef L; Poronnik P; Kelly DJ; Gilbert RE; Pollock CA Kidney Int; 2005 Sep; 68(3):985-97. PubMed ID: 16105029 [TBL] [Abstract][Full Text] [Related]
65. The effects of glucose and insulin on renal electrolyte transport. DeFronzo RA; Goldberg M; Agus ZS J Clin Invest; 1976 Jul; 58(1):83-90. PubMed ID: 932211 [TBL] [Abstract][Full Text] [Related]
66. Sodium retention in cirrhotic rats is associated with increased renal abundance of sodium transporter proteins. Fernández-Llama P; Ageloff S; Fernández-Varo G; Ros J; Wang X; Garra N; Esteva-Font C; Ballarin J; Barcelo P; Arroyo V; Stokes JB; Knepper MA; Jiménez W Kidney Int; 2005 Feb; 67(2):622-30. PubMed ID: 15673309 [TBL] [Abstract][Full Text] [Related]
67. Study of new interactions of glitazone's stereoisomers and the endogenous ligand 15d-PGJ2 on six different PPAR gamma proteins. Álvarez-Almazán S; Bello M; Tamay-Cach F; Martínez-Archundia M; Alemán-González-Duhart D; Correa-Basurto J; Mendieta-Wejebe JE Biochem Pharmacol; 2017 Oct; 142():168-193. PubMed ID: 28716729 [TBL] [Abstract][Full Text] [Related]
68. Heterogeneity of tubular transport processes in the nephron. Berry CA Annu Rev Physiol; 1982; 44():181-201. PubMed ID: 7041793 [No Abstract] [Full Text] [Related]
70. Pioglitazone Suppresses CXCR7 Expression To Inhibit Human Macrophage Chemotaxis through Peroxisome Proliferator-Activated Receptor γ. Zhao D; Zhu Z; Li D; Xu R; Wang T; Liu K Biochemistry; 2015 Nov; 54(45):6806-14. PubMed ID: 26507929 [TBL] [Abstract][Full Text] [Related]
71. Role of Na(+)/H(+) exchanger NHE3 in nephron function: micropuncture studies with S3226, an inhibitor of NHE3. Vallon V; Schwark JR; Richter K; Hropot M Am J Physiol Renal Physiol; 2000 Mar; 278(3):F375-9. PubMed ID: 10710541 [TBL] [Abstract][Full Text] [Related]
72. Receptor-independent actions of PPAR thiazolidinedione agonists: is mitochondrial function the key? Feinstein DL; Spagnolo A; Akar C; Weinberg G; Murphy P; Gavrilyuk V; Dello Russo C Biochem Pharmacol; 2005 Jul; 70(2):177-88. PubMed ID: 15925327 [TBL] [Abstract][Full Text] [Related]
73. Rosiglitazone sensitizes MDA-MB-231 breast cancer cells to anti-tumour effects of tumour necrosis factor-alpha, CH11 and CYC202. Mody M; Dharker N; Bloomston M; Wang PS; Chou FS; Glickman TS; McCaffrey T; Yang Z; Pumfery A; Lee D; Ringel MD; Pinzone JJ Endocr Relat Cancer; 2007 Jun; 14(2):305-15. PubMed ID: 17639046 [TBL] [Abstract][Full Text] [Related]
74. Thiazolidinediones increase arachidonic acid release and subsequent prostanoid production in a peroxisome proliferator-activated receptor gamma-independent manner. Tsukamoto H; Hishinuma T; Suzuki N; Tayama R; Hiratsuka M; Yoshihisa T; Mizugaki M; Goto J Prostaglandins Other Lipid Mediat; 2004 Apr; 73(3-4):191-213. PubMed ID: 15287152 [TBL] [Abstract][Full Text] [Related]
75. PPARgamma agonists exert antifibrotic effects in renal tubular cells exposed to high glucose. Panchapakesan U; Sumual S; Pollock CA; Chen X Am J Physiol Renal Physiol; 2005 Nov; 289(5):F1153-8. PubMed ID: 15886275 [TBL] [Abstract][Full Text] [Related]
76. Rosiglitazone decreases peroxisome proliferator receptor-γ levels in microglia and inhibits TNF-α production: new evidences on neuroprotection in a progressive Parkinson's disease model. Carta AR; Frau L; Pisanu A; Wardas J; Spiga S; Carboni E Neuroscience; 2011 Oct; 194():250-61. PubMed ID: 21839812 [TBL] [Abstract][Full Text] [Related]
77. Functional effects of proximal tubular dopamine production. Baines AD Am J Hypertens; 1990 Jun; 3(6 Pt 2):68S-71S. PubMed ID: 2200436 [TBL] [Abstract][Full Text] [Related]
78. The role of anions in the regulation of proximal tubular sodium and fluid transport. Green R; Greenwood SL; Giebisch G Ann N Y Acad Sci; 1980; 341():125-33. PubMed ID: 6930835 [No Abstract] [Full Text] [Related]
79. Expression of cytochrome P-450 4 enzymes in the kidney and liver: regulation by PPAR and species-difference between rat and human. Ito O; Nakamura Y; Tan L; Ishizuka T; Sasaki Y; Minami N; Kanazawa M; Ito S; Sasano H; Kohzuki M Mol Cell Biochem; 2006 Mar; 284(1-2):141-8. PubMed ID: 16552476 [TBL] [Abstract][Full Text] [Related]
80. Renal lithium clearance as a measure of the delivery of water and sodium from the proximal tubule in humans. Thomsen K; Olesen OV Am J Med Sci; 1984 Nov; 288(4):158-61. PubMed ID: 6496561 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]