BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

34 related articles for article (PubMed ID: 19445496)

  • 1. The deprotonated guanine-cytosine base pair.
    Lind MC; Bera PP; Richardson NA; Wheeler SE; Schaefer HF
    Proc Natl Acad Sci U S A; 2006 May; 103(20):7554-9. PubMed ID: 16684882
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ionization Patterns and Chemical Reactivity of Cytosine-Guanine Watson-Crick Pairs.
    Uddin IA; Stec E; Papadantonakis GA
    Chemphyschem; 2024 May; 25(9):e202300946. PubMed ID: 38381922
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of hydration on proton transfer in the guanine-cytosine radical cation (G*+-C) base pair: a density functional theory study.
    Kumar A; Sevilla MD
    J Phys Chem B; 2009 Aug; 113(33):11359-61. PubMed ID: 19485319
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ionization Patterns and Chemical Reactivity of Cytosine-Guanine Watson-Crick Pairs.
    Uddin IA; Stec E; Papadantonakis GA
    Chemphyschem; 2024 May; 25(9):e202400391. PubMed ID: 38712664
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigating the Spectroscopy of the Gas Phase Guanine-Cytosine Pair: Keto versus Enol Configurations.
    Botti G; Ceotto M; Conte R
    J Phys Chem Lett; 2023 Oct; 14(40):8940-8947. PubMed ID: 37768143
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of N-N cross-links in DNA by reaction of radiation-produced DNA base pair diradicals: a DFT study.
    Pottiboyina V; Kumar A; Sevilla MD
    J Phys Chem B; 2011 Dec; 115(50):15090-7. PubMed ID: 22050209
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical Repair of Radical Damage to the GC Base Pair by DNA-Bound Bisbenzimidazoles.
    Anderson RF; Shinde SS; Andrau L; Leung B; Skene C; White JM; Lobachevsky PN; Martin RF
    J Phys Chem B; 2024 May; 128(18):4367-4376. PubMed ID: 38686959
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photochemical Generation of Benzyl Cations That Selectively Cross-Link Guanine and Cytosine in DNA.
    Wang Y; Liu S; Lin Z; Fan Y; Wang Y; Peng X
    Org Lett; 2016 Jun; 18(11):2544-7. PubMed ID: 27191599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. One-electron oxidation of ds(5'-GGG-3') and ds(5'-G(8OG)G-3') and the nature of hole distribution: a density functional theory (DFT) study.
    Kumar A; Adhikary A; Sevilla MD; Close DM
    Phys Chem Chem Phys; 2020 Mar; 22(9):5078-5089. PubMed ID: 32073006
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal versus photochemical tautomerization of cytosine and guanine: a BLYP computational study along the IRC curves.
    Cherneva TD; Delchev VB
    Turk J Chem; 2022; 46(6):1909-1917. PubMed ID: 37621335
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dopamine oxidation promoted by human telomeric DNA models in the presence of a Cu(II) terpyridine chelate.
    Bao Y; Zhou W; Miao W; Jia G; Li C
    Chem Commun (Camb); 2024 Jan; 60(9):1172-1175. PubMed ID: 38193540
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The damage of the Watson-Crick base pairs by nickel nanoparticles: A first-principles molecular dynamics study.
    Martínez-Zapata D; Santamaria R
    Comput Biol Chem; 2020 May; 87():107262. PubMed ID: 32623022
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple hydrogen-bonded dimers: are only the frontier atoms relevant?
    Nieuwland C; Almacellas D; Veldhuizen MM; de Azevedo Santos L; Poater J; Fonseca Guerra C
    Phys Chem Chem Phys; 2024 Apr; 26(15):11306-11310. PubMed ID: 38054332
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Two Faces of the Guanyl Radical: Molecular Context and Behavior.
    Chatgilialoglu C
    Molecules; 2021 Jun; 26(12):. PubMed ID: 34207639
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterizing radiation-induced oxidation of DNA by way of the monohydrated guanine-cytosine radical cation.
    Jaeger HM; Schaefer HF
    J Phys Chem B; 2009 Jun; 113(23):8142-8. PubMed ID: 19445496
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electron attachment to the guanine-cytosine nucleic acid base pair and the effects of monohydration and proton transfer.
    Gupta A; Jaeger HM; Compaan KR; Schaefer HF
    J Phys Chem B; 2012 May; 116(19):5579-87. PubMed ID: 22530702
    [TBL] [Abstract][Full Text] [Related]  

  • 17. True stabilization energies for the optimal planar hydrogen-bonded and stacked structures of guanine...cytosine, adenine...thymine, and their 9- and 1-methyl derivatives: complete basis set calculations at the MP2 and CCSD(T) levels and comparison with experiment.
    Jurecka P; Hobza P
    J Am Chem Soc; 2003 Dec; 125(50):15608-13. PubMed ID: 14664608
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Marked variations of dissociation energy and H-bond character of the guanine-cytosine base pair induced by one-electron oxidation and Li+ cation coupling.
    Sun L; Bu Y
    J Phys Chem B; 2005 Jan; 109(1):593-600. PubMed ID: 16851051
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxidatively generated damage to the guanine moiety of DNA: mechanistic aspects and formation in cells.
    Cadet J; Douki T; Ravanat JL
    Acc Chem Res; 2008 Aug; 41(8):1075-83. PubMed ID: 18666785
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.