BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 19445496)

  • 21. Ionization Patterns and Chemical Reactivity of Cytosine-Guanine Watson-Crick Pairs.
    Uddin IA; Stec E; Papadantonakis GA
    Chemphyschem; 2024 May; 25(9):e202300946. PubMed ID: 38381922
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cytosine catalysis of nitrosative guanine deamination and interstrand cross-link formation.
    Glaser R; Wu H; Lewis M
    J Am Chem Soc; 2005 May; 127(20):7346-58. PubMed ID: 15898783
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Combined Monte Carlo and quantum mechanics study of the hydration of the guanine-cytosine base pair.
    Coutinho K; Ludwig V; Canuto S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 1):061902. PubMed ID: 15244612
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Theoretical ab initio study of the effects of methylation on structure and stability of G:C Watson-Crick base pair.
    Forde G; Flood A; Salter L; Hill G; Gorb L; Leszczynski J
    J Biomol Struct Dyn; 2003 Jun; 20(6):811-7. PubMed ID: 12744710
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Supramolecular switches based on the guanine-cytosine (GC) Watson-Crick pair: effect of neutral and ionic substituents.
    Fonseca Guerra C; van der Wijst T; Bickelhaupt FM
    Chemistry; 2006 Apr; 12(11):3032-42. PubMed ID: 16453355
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Influence of DNA structure on the reactivity of the guanine radical cation.
    Gervasio FL; Laio A; Iannuzzi M; Parrinello M
    Chemistry; 2004 Oct; 10(19):4846-52. PubMed ID: 15372666
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hydrogen-bonding-induced shifts of the excitation energies in nucleic acid bases: an interplay between electrostatic and electron density overlap effects.
    Wesolowski TA
    J Am Chem Soc; 2004 Sep; 126(37):11444-5. PubMed ID: 15366883
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Geometries, charges, dipole moments and interaction energies of normal, tautomeric and novel bases.
    Jiang SP; Raghunathan G; Ting KL; Xuan JC; Jernigan RL
    J Biomol Struct Dyn; 1994 Oct; 12(2):367-82. PubMed ID: 7702775
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ab initio molecular orbital evaluation of the hydrogen bond energy of base pairs formed between substituted 1-methylcytosine derivatives and 9-methylguanine.
    Kawahara S; Kobori A; Taira K; Sekine M; Uchimaru T
    Nucleic Acids Res Suppl; 2001; (1):29-30. PubMed ID: 12836248
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synthesis of [(MeCyt)2H]I-structure and stability of a dimeric threefold hydrogen-bonded 1-methylcytosinium 1-methylcytosine cation.
    Krüger T; Bruhn C; Steinborn D
    Org Biomol Chem; 2004 Sep; 2(17):2513-6. PubMed ID: 15326532
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Spiroiminodihydantoin lesions derived from guanine oxidation: structures, energetics, and functional implications.
    Jia L; Shafirovich V; Shapiro R; Geacintov NE; Broyde S
    Biochemistry; 2005 Apr; 44(16):6043-51. PubMed ID: 15835893
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Triplet (pi,pi) reactivity of the guanine-cytosine DNA base pair: benign deactivation versus double tautomerization via intermolecular hydrogen transfer.
    Blancafort L; Bertran J; Sodupe M
    J Am Chem Soc; 2004 Oct; 126(40):12770-1. PubMed ID: 15469260
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rapid radical formation by DNA charge transport through sequences lacking intervening guanines.
    Yoo J; Delaney S; Stemp ED; Barton JK
    J Am Chem Soc; 2003 Jun; 125(22):6640-1. PubMed ID: 12769567
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluation of free energy landscape for base-amino acid interactions using ab initio force field and extensive sampling.
    Yoshida T; Nishimura T; Aida M; Pichierri F; Gromiha MM; Sarai A
    Biopolymers; 2001-2002; 61(1):84-95. PubMed ID: 11891631
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interaction of Ia and IIa group cations with the guanine site in cytosine-guanine nucleic acid base pair: an ab initio Hartree Fock study in the absence of basis set superposition error.
    Famulari A; Moroni F; Sironi M; Raimondi M
    Comput Chem; 2000 May; 24(3-4):341-9. PubMed ID: 10816004
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of hydration on proton transfer in the guanine-cytosine radical cation (G*+-C) base pair: a density functional theory study.
    Kumar A; Sevilla MD
    J Phys Chem B; 2009 Aug; 113(33):11359-61. PubMed ID: 19485319
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ab initio GB study of methylation reaction of adenine, cytosine, guanine, and thymine by methanediazonium ion.
    Nakayama N; Tanaka S; Kikuchi O
    J Theor Biol; 2002 Mar; 215(1):13-22. PubMed ID: 12051980
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Theoretical study of substitution effect of the hydrogen bond stability of 9-methylguanine derivatives and 1-methylcytosine.
    Kawahara S; Sekine M; Taira K; Kobayashi H; Uchimaru T
    Nucleic Acids Res Suppl; 2002; (2):191-2. PubMed ID: 12903170
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Photochemical selectivity in guanine-cytosine base-pair structures.
    Abo-Riziq A; Grace L; Nir E; Kabelac M; Hobza P; de Vries MS
    Proc Natl Acad Sci U S A; 2005 Jan; 102(1):20-3. PubMed ID: 15618394
    [TBL] [Abstract][Full Text] [Related]  

  • 40. First principles calculations of the pKa values and tautomers of isoguanine and xanthine.
    Rogstad KN; Jang YH; Sowers LC; Goddard WA
    Chem Res Toxicol; 2003 Nov; 16(11):1455-62. PubMed ID: 14615972
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.