These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 19445524)
1. Rapid in situ generation of two patterned chemoselective surface chemistries from a single hydroxy-terminated surface using controlled microfluidic oxidation. Pulsipher A; Westcott NP; Luo W; Yousaf MN J Am Chem Soc; 2009 Jun; 131(22):7626-32. PubMed ID: 19445524 [TBL] [Abstract][Full Text] [Related]
2. Expedient generation of patterned surface aldehydes by microfluidic oxidation for chemoselective immobilization of ligands and cells. Westcott NP; Pulsipher A; Lamb BM; Yousaf MN Langmuir; 2008 Sep; 24(17):9237-40. PubMed ID: 18672921 [TBL] [Abstract][Full Text] [Related]
3. Importance of the indium tin oxide substrate on the quality of self-assembled monolayers formed from organophosphonic acids. Chockalingam M; Darwish N; Le Saux G; Gooding JJ Langmuir; 2011 Mar; 27(6):2545-52. PubMed ID: 21314169 [TBL] [Abstract][Full Text] [Related]
4. Tandem surface microfluidic lithography and activation to generate patch pattern biospecific ligand and cell arrays. Pulsipher A; Yousaf MN Langmuir; 2010 Mar; 26(6):4130-5. PubMed ID: 19839568 [TBL] [Abstract][Full Text] [Related]
5. Renewable and optically transparent electroactive indium tin oxide surfaces for chemoselective ligand immobilization and biospecific cell adhesion. Luo W; Westcott NP; Pulsipher A; Yousaf MN Langmuir; 2008 Nov; 24(22):13096-101. PubMed ID: 18928305 [TBL] [Abstract][Full Text] [Related]
6. Spatially modulating interfacial properties of transparent conductive oxides: patterning work function with phosphonic Acid self-assembled monolayers. Knesting KM; Hotchkiss PJ; Macleod BA; Marder SR; Ginger DS Adv Mater; 2012 Feb; 24(5):642-6. PubMed ID: 21956343 [TBL] [Abstract][Full Text] [Related]
7. An interfacial oxime reaction to immobilize ligands and cells in patterns and gradients to photoactive surfaces. Park S; Yousaf MN Langmuir; 2008 Jun; 24(12):6201-7. PubMed ID: 18479156 [TBL] [Abstract][Full Text] [Related]
9. Surface modification of indium tin oxide via electrochemical reduction of aryldiazonium cations. Maldonado S; Smith TJ; Williams RD; Morin S; Barton E; Stevenson KJ Langmuir; 2006 Mar; 22(6):2884-91. PubMed ID: 16519499 [TBL] [Abstract][Full Text] [Related]
10. Studies on the effect of solvents on self-assembled monolayers formed from organophosphonic acids on indium tin oxide. Chen X; Luais E; Darwish N; Ciampi S; Thordarson P; Gooding JJ Langmuir; 2012 Jun; 28(25):9487-95. PubMed ID: 22621243 [TBL] [Abstract][Full Text] [Related]
11. A novel ferroceneylazobenzene self-assembled monolayer on an ITO electrode: photochemical and electrochemical behaviors. Li C; Ren B; Zhang Y; Cheng Z; Liu X; Tong Z Langmuir; 2008 Nov; 24(22):12911-8. PubMed ID: 18928307 [TBL] [Abstract][Full Text] [Related]
12. Biointerfaces on indium-tin oxide prepared from organophosphonic acid self-assembled monolayers. Chockalingam M; Magenau A; Parker SG; Parviz M; Vivekchand SR; Gaus K; Gooding JJ Langmuir; 2014 Jul; 30(28):8509-15. PubMed ID: 24960524 [TBL] [Abstract][Full Text] [Related]
13. On-chip amperometric measurement of quantal catecholamine release using transparent indium tin oxide electrodes. Sun X; Gillis KD Anal Chem; 2006 Apr; 78(8):2521-5. PubMed ID: 16615759 [TBL] [Abstract][Full Text] [Related]
14. Electrochemical control of protein monolayers at indium tin oxide surfaces for the reagentless optical biosensing of nitric oxide. Hedges DH; Richardson DJ; Russell DA Langmuir; 2004 Mar; 20(5):1901-8. PubMed ID: 15801461 [TBL] [Abstract][Full Text] [Related]
15. Selective Anchoring Groups for Molecular Electronic Junctions with ITO Electrodes. Planje IJ; Davidson RJ; Vezzoli A; Daaoub A; Sangtarash S; Sadeghi H; Martín S; Cea P; Lambert CJ; Beeby A; Higgins SJ; Nichols RJ ACS Sens; 2021 Feb; 6(2):530-537. PubMed ID: 33471521 [TBL] [Abstract][Full Text] [Related]
16. Facile patterning of reduced graphene oxide film into microelectrode array for highly sensitive sensing. Li F; Xue M; Ma X; Zhang M; Cao T Anal Chem; 2011 Aug; 83(16):6426-30. PubMed ID: 21761929 [TBL] [Abstract][Full Text] [Related]
17. Improved method for the preparation of carboxylic acid and amine terminated self-assembled monolayers of alkanethiolates. Wang H; Chen S; Li L; Jiang S Langmuir; 2005 Mar; 21(7):2633-6. PubMed ID: 15779923 [TBL] [Abstract][Full Text] [Related]
18. Electrochemical characterization of self-assembled monolayers (SAMs) of silanes on indium tin oxide (ITO) electrodes--tuning electron transfer behaviour across electrode-electrolyte interface. Muthurasu A; Ganesh V J Colloid Interface Sci; 2012 May; 374(1):241-9. PubMed ID: 22386205 [TBL] [Abstract][Full Text] [Related]
19. High-density fabrication of normally closed microfluidic valves by patterned deactivation of oxidized polydimethylsiloxane. Mosadegh B; Tavana H; Lesher-Perez SC; Takayama S Lab Chip; 2011 Feb; 11(4):738-42. PubMed ID: 21132212 [TBL] [Abstract][Full Text] [Related]
20. Patterned immobilization of antibodies within roll-to-roll hot embossed polymeric microfluidic channels. Feyssa B; Liedert C; Kivimaki L; Johansson LS; Jantunen H; Hakalahti L PLoS One; 2013; 8(7):e68918. PubMed ID: 23874811 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]