BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 19445902)

  • 1. Effects of CYP2D6 status on harmaline metabolism, pharmacokinetics and pharmacodynamics, and a pharmacogenetics-based pharmacokinetic model.
    Wu C; Jiang XL; Shen HW; Yu AM
    Biochem Pharmacol; 2009 Sep; 78(6):617-24. PubMed ID: 19445902
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of monoamine oxidase inhibitor and cytochrome P450 2D6 status on 5-methoxy-N,N-dimethyltryptamine metabolism and pharmacokinetics.
    Shen HW; Wu C; Jiang XL; Yu AM
    Biochem Pharmacol; 2010 Jul; 80(1):122-8. PubMed ID: 20206139
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pharmacokinetic interactions between monoamine oxidase A inhibitor harmaline and 5-methoxy-N,N-dimethyltryptamine, and the impact of CYP2D6 status.
    Jiang XL; Shen HW; Mager DE; Yu AM
    Drug Metab Dispos; 2013 May; 41(5):975-86. PubMed ID: 23393220
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contribution of individual cytochrome P450 isozymes to the O-demethylation of the psychotropic beta-carboline alkaloids harmaline and harmine.
    Yu AM; Idle JR; Krausz KW; Küpfer A; Gonzalez FJ
    J Pharmacol Exp Ther; 2003 Apr; 305(1):315-22. PubMed ID: 12649384
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Minimizing polymorphic metabolism in drug discovery: evaluation of the utility of in vitro methods for predicting pharmacokinetic consequences associated with CYP2D6 metabolism.
    Gibbs JP; Hyland R; Youdim K
    Drug Metab Dispos; 2006 Sep; 34(9):1516-22. PubMed ID: 16763018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of dextromethorphan metabolism using hepatocytes from CYP2D6 poor and extensive metabolizers.
    Takashima T; Murase S; Iwasaki K; Shimada K
    Drug Metab Pharmacokinet; 2005 Jun; 20(3):177-82. PubMed ID: 15988119
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Psychedelic 5-methoxy-N,N-dimethyltryptamine: metabolism, pharmacokinetics, drug interactions, and pharmacological actions.
    Shen HW; Jiang XL; Winter JC; Yu AM
    Curr Drug Metab; 2010 Oct; 11(8):659-66. PubMed ID: 20942780
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Population Pharmacokinetic-Pharmacodynamic Modeling of Carvedilol to Evaluate the Effect of Cytochrome P450 2D6 Genotype on the Heart Rate Reduction.
    Hwang S; Lee S; Yoon J; Chung JY
    J Korean Med Sci; 2023 Jun; 38(22):e173. PubMed ID: 37272562
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Difference in desipramine metabolic profile between wild-type and CYP2D6-humanized mice.
    Shen HW; Yu AM
    Drug Metab Lett; 2009 Dec; 3(4):234-41. PubMed ID: 19995332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pinoline may be used as a probe for CYP2D6 activity.
    Jiang XL; Shen HW; Yu AM
    Drug Metab Dispos; 2009 Mar; 37(3):443-6. PubMed ID: 19095720
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Use of In Vitro Data and Physiologically-Based Pharmacokinetic Modeling to Predict Drug Metabolite Exposure: Desipramine Exposure in Cytochrome P4502D6 Extensive and Poor Metabolizers Following Administration of Imipramine.
    Nguyen HQ; Callegari E; Obach RS
    Drug Metab Dispos; 2016 Oct; 44(10):1569-78. PubMed ID: 27440861
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polymorphism of human cytochrome P450 2D6 and its clinical significance: Part I.
    Zhou SF
    Clin Pharmacokinet; 2009; 48(11):689-723. PubMed ID: 19817501
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polymorphic cytochrome P450 2D6: humanized mouse model and endogenous substrates.
    Yu AM; Idle JR; Gonzalez FJ
    Drug Metab Rev; 2004 May; 36(2):243-77. PubMed ID: 15237854
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CYP3A4 mediates dextropropoxyphene N-demethylation to nordextropropoxyphene: human in vitro and in vivo studies and lack of CYP2D6 involvement.
    Somogyi AA; Menelaou A; Fullston SV
    Xenobiotica; 2004 Oct; 34(10):875-87. PubMed ID: 15764408
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Usefulness of hepatocytes for evaluating the genetic polymorphism of CYP2D6 substrates.
    Komura H; Iwaki M
    Xenobiotica; 2005 Jun; 35(6):575-87. PubMed ID: 16192109
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cytochrome P450 dependent metabolism of the new designer drug 1-(3-trifluoromethylphenyl)piperazine (TFMPP). In vivo studies in Wistar and Dark Agouti rats as well as in vitro studies in human liver microsomes.
    Staack RF; Paul LD; Springer D; Kraemer T; Maurer HH
    Biochem Pharmacol; 2004 Jan; 67(2):235-44. PubMed ID: 14698036
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of CYP2D6 genotype on flecainide pharmacokinetics in Japanese patients with supraventricular tachyarrhythmia.
    Doki K; Homma M; Kuga K; Kusano K; Watanabe S; Yamaguchi I; Kohda Y
    Eur J Clin Pharmacol; 2006 Nov; 62(11):919-26. PubMed ID: 16944116
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polymorphism of human cytochrome P450 2D6 and its clinical significance: part II.
    Zhou SF
    Clin Pharmacokinet; 2009; 48(12):761-804. PubMed ID: 19902987
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic polymorphism in cytochrome P450 2D6 (CYP2D6): Population distribution of CYP2D6 activity.
    Neafsey P; Ginsberg G; Hattis D; Sonawane B
    J Toxicol Environ Health B Crit Rev; 2009; 12(5-6):334-61. PubMed ID: 20183526
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CYP2D6 pharmacogenetic and oxycodone pharmacokinetic association study in pediatric surgical patients.
    Balyan R; Mecoli M; Venkatasubramanian R; Chidambaran V; Kamos N; Clay S; Moore DL; Mavi J; Glover CD; Szmuk P; Vinks A; Sadhasivam S
    Pharmacogenomics; 2017 Mar; 18(4):337-348. PubMed ID: 28244808
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.