These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 19445957)

  • 1. Wind gusts and plant aeroelasticity effects on the aerodynamics of pollen shedding: a hypothetical turbulence-initiated wind-pollination mechanism.
    Urzay J; Llewellyn Smith SG; Thompson E; Glover BJ
    J Theor Biol; 2009 Aug; 259(4):785-92. PubMed ID: 19445957
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The evolution of ovule number and flower size in wind-pollinated plants.
    Friedman J; Barrett SC
    Am Nat; 2011 Feb; 177(2):246-57. PubMed ID: 21460560
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Turbulence-induced resonance vibrations cause pollen release in wind-pollinated Plantago lanceolata L. (Plantaginaceae).
    Timerman D; Greene DF; Urzay J; Ackerman JD
    J R Soc Interface; 2014 Dec; 11(101):20140866. PubMed ID: 25297315
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional prediction of maize pollen dispersal and cross-pollination, and the effects of windbreaks.
    Ushiyama T; Du M; Inoue S; Shibaike H; Yonemura S; Kawashima S; Amano K
    Environ Biosafety Res; 2009; 8(4):183-202. PubMed ID: 20883658
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aerodynamics and pollen ultrastructure in Ephedra.
    Bolinder K; Niklas KJ; Rydin C
    Am J Bot; 2015 Mar; 102(3):457-70. PubMed ID: 25784479
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pollen clumping and wind dispersal in an invasive angiosperm.
    Martin MD; Chamecki M; Brush GS; Meneveau C; Parlange MB
    Am J Bot; 2009 Sep; 96(9):1703-11. PubMed ID: 21622356
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The biomechanics of pollen release: new perspectives on the evolution of wind pollination in angiosperms.
    Timerman D; Barrett SCH
    Biol Rev Camb Philos Soc; 2021 Oct; 96(5):2146-2163. PubMed ID: 34076950
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pollination intensity influences sex ratios in dioecious Rumex nivalis, a wind-pollinated plant.
    Stehlik I; Barrett SC
    Evolution; 2006 Jun; 60(6):1207-14. PubMed ID: 16892971
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wind of change: new insights on the ecology and evolution of pollination and mating in wind-pollinated plants.
    Friedman J; Barrett SC
    Ann Bot; 2009 Jun; 103(9):1515-27. PubMed ID: 19218583
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatiotemporal mating pattern variation in a wind-pollinated Mediterranean shrub.
    Albaladejo RG; González-Martínez SC; Heuertz M; Vendramin GG; Aparicio A
    Mol Ecol; 2009 Dec; 18(24):5195-206. PubMed ID: 19889041
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Floral sex ratio strategy in wind-pollinated monoecious species subject to wind-pollination efficiency and competitive sharing among male flowers as a game.
    Masaka K; Takada T
    J Theor Biol; 2006 May; 240(1):114-25. PubMed ID: 16236326
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aerodynamics of saccate pollen and its implications for wind pollination.
    Schwendemann AB; Wang G; Mertz ML; McWilliams RT; Thatcher SL; Osborn JM
    Am J Bot; 2007 Aug; 94(8):1371-81. PubMed ID: 21636505
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plant dispersal in the sub-Antarctic inferred from anisotropic genetic structure.
    Born C; Le Roux PC; Spohr C; McGeoch MA; Van Vuuren BJ
    Mol Ecol; 2012 Jan; 21(1):184-94. PubMed ID: 22129220
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transgenic GFP as a molecular marker for approaches to quantify pollination mechanism and gene flow in Arabidopsis thaliana.
    Tan YY; Xu HH; Tao WJ; Hoffmann MH; Wang XF; Lu YT
    Plant Biol (Stuttg); 2005 Jul; 7(4):405-10. PubMed ID: 16025413
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The consequences of monoecy and protogyny for mating in wind-pollinated Carex.
    Friedman J; Barrett SCH
    New Phytol; 2009 Jan; 181(2):489-497. PubMed ID: 19121043
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insect and wind pollination of an alpine biennial Aconitum gymnandrum (Ranunculaceae).
    Duan YW; Zhang TF; He YP; Liu JQ
    Plant Biol (Stuttg); 2009 Nov; 11(6):796-802. PubMed ID: 19796356
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sex-specific selection on plant architecture through "budget" and "direct" effects in experimental populations of the wind-pollinated herb, Mercurialis annua.
    Tonnabel J; David P; Klein EK; Pannell JR
    Evolution; 2019 May; 73(5):897-912. PubMed ID: 30852845
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimating anisotropic pollen dispersal: a case study in Quercus lobata.
    Austerlitz F; Dutech C; Smouse PE; Davis F; Sork VL
    Heredity (Edinb); 2007 Aug; 99(2):193-204. PubMed ID: 17487216
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative analysis of pollen release biomechanics in Thalictrum: implications for evolutionary transitions between animal and wind pollination.
    Timerman D; Barrett SCH
    New Phytol; 2019 Nov; 224(3):1121-1132. PubMed ID: 31172529
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting the pathway to wind pollination: heritabilities and genetic correlations of inflorescence traits associated with wind pollination in Schiedea salicaria (Caryophyllaceae).
    Weller SG; Sakai AK; Culley TM; Campbell DR; Dunbar-Wallis AK
    J Evol Biol; 2006 Mar; 19(2):331-42. PubMed ID: 16599909
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.