These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
295 related articles for article (PubMed ID: 19446008)
41. Scolopendin 2 leads to cellular stress response in Candida albicans. Lee H; Hwang JS; Lee DG Apoptosis; 2016 Jul; 21(7):856-65. PubMed ID: 27207682 [TBL] [Abstract][Full Text] [Related]
42. Farnesol-induced generation of reactive oxygen species dependent on mitochondrial transmembrane potential hyperpolarization mediated by F(0)F(1)-ATPase in yeast. Machida K; Tanaka T FEBS Lett; 1999 Nov; 462(1-2):108-12. PubMed ID: 10580101 [TBL] [Abstract][Full Text] [Related]
43. β-amyrin-induced apoptosis in Candida albicans triggered by calcium. Kwun MS; Lee HJ; Lee DG Fungal Biol; 2021 Aug; 125(8):630-636. PubMed ID: 34281656 [TBL] [Abstract][Full Text] [Related]
44. Antifungal Effect of Arabidopsis SGT1 Proteins via Mitochondrial Reactive Oxygen Species. Park SC; Cheong MS; Kim EJ; Kim JH; Chi YH; Jang MK J Agric Food Chem; 2017 Sep; 65(38):8340-8347. PubMed ID: 28871788 [TBL] [Abstract][Full Text] [Related]
45. Endogenous reactive oxygen species is an important mediator of miconazole antifungal effect. Kobayashi D; Kondo K; Uehara N; Otokozawa S; Tsuji N; Yagihashi A; Watanabe N Antimicrob Agents Chemother; 2002 Oct; 46(10):3113-7. PubMed ID: 12234832 [TBL] [Abstract][Full Text] [Related]
46. Identification of a novel antimicrobial peptide, scolopendin 1, derived from centipede Scolopendra subspinipes mutilans and its antifungal mechanism. Choi H; Hwang JS; Lee DG Insect Mol Biol; 2014 Dec; 23(6):788-99. PubMed ID: 25209888 [TBL] [Abstract][Full Text] [Related]
47. Polyunsaturated fatty acids cause apoptosis in C. albicans and C. dubliniensis biofilms. Thibane VS; Ells R; Hugo A; Albertyn J; van Rensburg WJ; Van Wyk PW; Kock JL; Pohl CH Biochim Biophys Acta; 2012 Oct; 1820(10):1463-8. PubMed ID: 22609876 [TBL] [Abstract][Full Text] [Related]
48. Antifungal activity of a prenylated flavonoid from Dalea elegans against Candida albicans biofilms. Peralta MA; da Silva MA; Ortega MG; Cabrera JL; Paraje MG Phytomedicine; 2015 Oct; 22(11):975-80. PubMed ID: 26407939 [TBL] [Abstract][Full Text] [Related]
49. Alteramide B is a microtubule antagonist of inhibiting Candida albicans. Ding Y; Li Y; Li Z; Zhang J; Lu C; Wang H; Shen Y; Du L Biochim Biophys Acta; 2016 Oct; 1860(10):2097-106. PubMed ID: 27373684 [TBL] [Abstract][Full Text] [Related]
50. The influence of the N-terminal region of antimicrobial peptide pleurocidin on fungal apoptosis. Choi H; Lee DG J Microbiol Biotechnol; 2013 Oct; 23(10):1386-94. PubMed ID: 23928848 [TBL] [Abstract][Full Text] [Related]
51. Antifungal macrocyclic bis(bibenzyls) from the Chinese liverwort Ptagiochasm intermedlum L. Xie CF; Qu JB; Wu XZ; Liu N; Ji M; Lou HX Nat Prod Res; 2010 Apr; 24(6):515-20. PubMed ID: 20182948 [TBL] [Abstract][Full Text] [Related]
52. Oxygen accessibility and iron levels are critical factors for the antifungal action of ciclopirox against Candida albicans. Sigle HC; Thewes S; Niewerth M; Korting HC; Schäfer-Korting M; Hube B J Antimicrob Chemother; 2005 May; 55(5):663-73. PubMed ID: 15790671 [TBL] [Abstract][Full Text] [Related]
53. Mitochondria-dependent reactive oxygen species-mediated programmed cell death induced by 3,3'-diindolylmethane through inhibition of F0F1-ATP synthase in unicellular protozoan parasite Leishmania donovani. Roy A; Ganguly A; BoseDasgupta S; Das BB; Pal C; Jaisankar P; Majumder HK Mol Pharmacol; 2008 Nov; 74(5):1292-307. PubMed ID: 18703668 [TBL] [Abstract][Full Text] [Related]
54. Role of calcium in reactive oxygen species-induced apoptosis in Candida albicans: an antifungal mechanism of antimicrobial peptide, PMAP-23. Kim S; Lee DG Free Radic Res; 2019 Jan; 53(1):8-17. PubMed ID: 30403895 [TBL] [Abstract][Full Text] [Related]
55. Potential role of potassium and chloride channels in regulation of silymarin-induced apoptosis in Candida albicans. Lee W; Lee DG IUBMB Life; 2018 Mar; 70(3):197-206. PubMed ID: 29356280 [TBL] [Abstract][Full Text] [Related]
56. A semisynthetic borrelidin analogue BN-3b exerts potent antifungal activity against Candida albicans through ROS-mediated oxidative damage. Su H; Hu C; Cao B; Qu X; Guan P; Mu Y; Han L; Huang X Sci Rep; 2020 Mar; 10(1):5081. PubMed ID: 32193473 [TBL] [Abstract][Full Text] [Related]
57. Cecropin A-induced apoptosis is regulated by ion balance and glutathione antioxidant system in Candida albicans. Yun J; Lee DG IUBMB Life; 2016 Aug; 68(8):652-62. PubMed ID: 27338801 [TBL] [Abstract][Full Text] [Related]
58. Mechanism of action of novel synthetic dodecapeptides against Candida albicans. Maurya IK; Thota CK; Sharma J; Tupe SG; Chaudhary P; Singh MK; Thakur IS; Deshpande M; Prasad R; Chauhan VS Biochim Biophys Acta; 2013 Nov; 1830(11):5193-203. PubMed ID: 23876294 [TBL] [Abstract][Full Text] [Related]
59. The antimicrobial peptide, psacotheasin induces reactive oxygen species and triggers apoptosis in Candida albicans. Hwang B; Hwang JS; Lee J; Lee DG Biochem Biophys Res Commun; 2011 Feb; 405(2):267-71. PubMed ID: 21219857 [TBL] [Abstract][Full Text] [Related]
60. Endoplasmic reticulum-derived reactive oxygen species (ROS) is involved in toxicity of cell wall stress to Candida albicans. Yu Q; Zhang B; Li J; Zhang B; Wang H; Li M Free Radic Biol Med; 2016 Oct; 99():572-583. PubMed ID: 27650297 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]