These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

421 related articles for article (PubMed ID: 19446566)

  • 1. CmCatD, a cathepsin D-like protease has a potential role in insect defense against a phytocystatin.
    Ahn JE; Zhu-Salzman K
    J Insect Physiol; 2009 Aug; 55(8):678-85. PubMed ID: 19446566
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional expression of an insect cathepsin B-like counter-defence protein.
    Koo YD; Ahn JE; Salzman RA; Moon J; Chi YH; Yun DJ; Lee SY; Koiwa H; Zhu-Salzman K
    Insect Mol Biol; 2008 Jun; 17(3):235-45. PubMed ID: 18397276
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptional regulation in cowpea bruchid guts during adaptation to a plant defence protease inhibitor.
    Moon J; Salzman RA; Ahn JE; Koiwa H; Zhu-Salzman K
    Insect Mol Biol; 2004 Jun; 13(3):283-91. PubMed ID: 15157229
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cowpea bruchid Callosobruchus maculatus counteracts dietary protease inhibitors by modulating propeptides of major digestive enzymes.
    Ahn JE; Lovingshimer MR; Salzman RA; Presnail JK; Lu AL; Koiwa H; Zhu-Salzman K
    Insect Mol Biol; 2007 Jun; 16(3):295-304. PubMed ID: 17433072
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional roles of specific bruchid protease isoforms in adaptation to a soybean protease inhibitor.
    Ahn JE; Salzman RA; Braunagel SC; Koiwa H; Zhu-Salzman K
    Insect Mol Biol; 2004 Dec; 13(6):649-57. PubMed ID: 15606813
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protease inhibitors from several classes work synergistically against Callosobruchus maculatus.
    Amirhusin B; Shade RE; Koiwa H; Hasegawa PM; Bressan RA; Murdock LL; Zhu-Salzman K
    J Insect Physiol; 2007 Jul; 53(7):734-40. PubMed ID: 17482206
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cowpea bruchid Callosobruchus maculatus uses a three-component strategy to overcome a plant defensive cysteine protease inhibitor.
    Zhu-Salzman K; Koiwa H; Salzman RA; Shade RE; Ahn JE
    Insect Mol Biol; 2003 Apr; 12(2):135-45. PubMed ID: 12653935
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptional regulation in southern corn rootworm larvae challenged by soyacystatin N.
    Liu Y; Salzman RA; Pankiw T; Zhu-Salzman K
    Insect Biochem Mol Biol; 2004 Oct; 34(10):1069-77. PubMed ID: 15475301
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sequence and function of lysosomal and digestive cathepsin D-like proteinases of Musca domestica midgut.
    Padilha MH; Pimentel AC; Ribeiro AF; Terra WR
    Insect Biochem Mol Biol; 2009 Nov; 39(11):782-91. PubMed ID: 19815068
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cowpea bruchid midgut transcriptome response to a soybean cystatin--costs and benefits of counter-defence.
    Chi YH; Salzman RA; Balfe S; Ahn JE; Sun W; Moon J; Yun DJ; Lee SY; Higgins TJ; Pittendrigh B; Murdock LL; Zhu-Salzman K
    Insect Mol Biol; 2009 Feb; 18(1):97-110. PubMed ID: 19196350
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular cloning and functional characterization of an aspartic protease from the hard tick Haemaphysalis longicornis.
    Boldbaatar D; Sikalizyo Sikasunge C; Battsetseg B; Xuan X; Fujisaki K
    Insect Biochem Mol Biol; 2006 Jan; 36(1):25-36. PubMed ID: 16360947
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterisation of cysteine proteinases responsible for digestive proteolysis in guts of larval western corn rootworm (Diabrotica virgifera) by expression in the yeast Pichia pastoris.
    Bown DP; Wilkinson HS; Jongsma MA; Gatehouse JA
    Insect Biochem Mol Biol; 2004 Apr; 34(4):305-20. PubMed ID: 15041015
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Response of digestive cysteine proteinases from the Colorado potato beetle (Leptinotarsa decemlineata) and the black vine weevil (Otiorynchus sulcatus) to a recombinant form of human stefin A.
    Michaud D; Nguyen-Quoc B; Vrain TC; Fong D; Yelle S
    Arch Insect Biochem Physiol; 1996; 31(4):451-64. PubMed ID: 8920105
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A serine protease in the midgut of the silkworm, Bombyx mori: protein sequencing, identification of cDNA, demonstration of its synthesis as zymogen form and activation during midgut remodeling.
    Kaji K; Tomino S; Asano T
    Insect Biochem Mol Biol; 2009 Mar; 39(3):207-17. PubMed ID: 19114104
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Colorado potato beetles compensate for tomato cathepsin D inhibitor expressed in transgenic potato.
    Brunelle F; Cloutier C; Michaud D
    Arch Insect Biochem Physiol; 2004 Mar; 55(3):103-13. PubMed ID: 14981655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular cloning of a multidomain cysteine protease and protease inhibitor precursor gene from the tobacco hornworm (Manduca sexta) and functional expression of the cathepsin F-like cysteine protease domain.
    Miyaji T; Murayama S; Kouzuma Y; Kimura N; Kanost MR; Kramer KJ; Yonekura M
    Insect Biochem Mol Biol; 2010 Dec; 40(12):835-46. PubMed ID: 20727410
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recombinant expression, localization and in vitro inhibition of midgut cysteine peptidase (Sl-CathL) from sugarcane weevil, Sphenophorus levis.
    Fonseca FP; Soares-Costa A; Ribeiro AF; Rosa JC; Terra WR; Henrique-Silva F
    Insect Biochem Mol Biol; 2012 Jan; 42(1):58-69. PubMed ID: 22100428
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diverse enzymatic specificities of digestive proteases, 'intestains', enable Colorado potato beetle larvae to counteract the potato defence mechanism.
    Gruden K; Popovic T; Cimerman N; Krizaj I; Strukelj B
    Biol Chem; 2003 Feb; 384(2):305-10. PubMed ID: 12675524
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adult Colorado potato beetles, Leptinotarsa decemlineata compensate for nutritional stress on oryzacystatin I-transgenic potato plants by hypertrophic behavior and over-production of insensitive proteases.
    Cloutier C; Jean C; Fournier M; Yelle S; Michaud D
    Arch Insect Biochem Physiol; 2000 Jun; 44(2):69-81. PubMed ID: 10861867
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Midgut proteases from Mamestra configurata (Lepidoptera: Noctuidae) larvae: characterization, cDNA cloning, and expressed sequence tag analysis.
    Hegedus D; Baldwin D; O'Grady M; Braun L; Gleddie S; Sharpe A; Lydiate D; Erlandson M
    Arch Insect Biochem Physiol; 2003 May; 53(1):30-47. PubMed ID: 12701112
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.