BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 19446931)

  • 1. New potential AChE inhibitor candidates.
    de Paula AA; Martins JB; dos Santos ML; Nascente Lde C; Romeiro LA; Areas TF; Vieira KS; Gambôa NF; Castro NG; Gargano R
    Eur J Med Chem; 2009 Sep; 44(9):3754-9. PubMed ID: 19446931
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cardanol-derived AChE inhibitors: Towards the development of dual binding derivatives for Alzheimer's disease.
    Lemes LFN; de Andrade Ramos G; de Oliveira AS; da Silva FMR; de Castro Couto G; da Silva Boni M; Guimarães MJR; Souza INO; Bartolini M; Andrisano V; do Nascimento Nogueira PC; Silveira ER; Brand GD; Soukup O; Korábečný J; Romeiro NC; Castro NG; Bolognesi ML; Romeiro LAS
    Eur J Med Chem; 2016 Jan; 108():687-700. PubMed ID: 26735910
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Virtual screening discovery of new acetylcholinesterase inhibitors issued from CERMN chemical library.
    Sopkova-de Oliveira Santos J; Lesnard A; Agondanou JH; Dupont N; Godard AM; Stiebing S; Rochais C; Fabis F; Dallemagne P; Bureau R; Rault S
    J Chem Inf Model; 2010 Mar; 50(3):422-8. PubMed ID: 20196555
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis, in vitro assay, and molecular modeling of new piperidine derivatives having dual inhibitory potency against acetylcholinesterase and Abeta1-42 aggregation for Alzheimer's disease therapeutics.
    Kwon YE; Park JY; No KT; Shin JH; Lee SK; Eun JS; Yang JH; Shin TY; Kim DK; Chae BS; Leem JY; Kim KH
    Bioorg Med Chem; 2007 Oct; 15(20):6596-607. PubMed ID: 17681794
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phenolic lipids affect the activity and conformation of acetylcholinesterase from Electrophorus electricus (Electric eel).
    Stasiuk M; Janiszewska A; Kozubek A
    Nutrients; 2014 Apr; 6(5):1823-31. PubMed ID: 24787269
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of alkyl phenols in cashew (Anacardium occidentale) products and assay of their antioxidant capacity.
    Trevisan MT; Pfundstein B; Haubner R; Würtele G; Spiegelhalder B; Bartsch H; Owen RW
    Food Chem Toxicol; 2006 Feb; 44(2):188-97. PubMed ID: 16095792
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design, synthesis and evaluation of flavonoid derivatives as potent AChE inhibitors.
    Sheng R; Lin X; Zhang J; Chol KS; Huang W; Yang B; He Q; Hu Y
    Bioorg Med Chem; 2009 Sep; 17(18):6692-8. PubMed ID: 19692250
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Active site directed docking studies: synthesis and pharmacological evaluation of cis-2,6-dimethyl piperidine sulfonamides as inhibitors of acetylcholinesterase.
    Girisha HR; Narendra Sharath Chandra JN; Boppana S; Malviya M; Sadashiva CT; Rangappa KS
    Eur J Med Chem; 2009 Oct; 44(10):4057-62. PubMed ID: 19493592
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multipotent drugs with cholinergic and neuroprotective properties for the treatment of Alzheimer and neuronal vascular diseases. I. Synthesis, biological assessment, and molecular modeling of simple and readily available 2-aminopyridine-, and 2-chloropyridine-3,5-dicarbonitriles.
    Samadi A; Marco-Contelles J; Soriano E; Alvarez-Pérez M; Chioua M; Romero A; González-Lafuente L; Gandía L; Roda JM; López MG; Villarroya M; García AG; Ríos Cde L
    Bioorg Med Chem; 2010 Aug; 18(16):5861-72. PubMed ID: 20656495
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Substituted spiro [2.3'] oxindolespiro [3.2″]-5,6-dimethoxy-indane-1″-one-pyrrolidine analogue as inhibitors of acetylcholinesterase.
    Ali MA; Ismail R; Choon TS; Yoon YK; Wei AC; Pandian S; Kumar RS; Osman H; Manogaran E
    Bioorg Med Chem Lett; 2010 Dec; 20(23):7064-6. PubMed ID: 20951037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure-activity relationships of acetylcholinesterase noncovalent inhibitors based on a polyamine backbone. 2. Role of the substituents on the phenyl ring and nitrogen atoms of caproctamine.
    Tumiatti V; Rosini M; Bartolini M; Cavalli A; Marucci G; Andrisano V; Angeli P; Banzi R; Minarini A; Recanatini M; Melchiorre C
    J Med Chem; 2003 Mar; 46(6):954-66. PubMed ID: 12620072
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and biological evaluation of 3,6-diaryl-7H-thiazolo[3,2-b] [1,2,4]triazin-7-one derivatives as acetylcholinesterase inhibitors.
    Jin Z; Yang L; Liu SJ; Wang J; Li S; Lin HQ; Wan DC; Hu C
    Arch Pharm Res; 2010 Oct; 33(10):1641-9. PubMed ID: 21052939
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bifunctional phenolic-choline conjugates as anti-oxidants and acetylcholinesterase inhibitors.
    Sebestík J; Marques SM; Falé PL; Santos S; Arduíno DM; Cardoso SM; Oliveira CR; Serralheiro ML; Santos MA
    J Enzyme Inhib Med Chem; 2011 Aug; 26(4):485-97. PubMed ID: 21067438
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The complex of a bivalent derivative of galanthamine with torpedo acetylcholinesterase displays drastic deformation of the active-site gorge: implications for structure-based drug design.
    Greenblatt HM; Guillou C; Guénard D; Argaman A; Botti S; Badet B; Thal C; Silman I; Sussman JL
    J Am Chem Soc; 2004 Dec; 126(47):15405-11. PubMed ID: 15563167
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of acetylcholinesterase, beta-amyloid aggregation, and NMDA receptors in Alzheimer's disease: a promising direction for the multi-target-directed ligands gold rush.
    Rosini M; Simoni E; Bartolini M; Cavalli A; Ceccarini L; Pascu N; McClymont DW; Tarozzi A; Bolognesi ML; Minarini A; Tumiatti V; Andrisano V; Mellor IR; Melchiorre C
    J Med Chem; 2008 Aug; 51(15):4381-4. PubMed ID: 18605718
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 2-Phenoxy-indan-1-one derivatives as acetylcholinesterase inhibitors: a study on the importance of modifications at the side chain on the activity.
    Shen Y; Sheng R; Zhang J; He Q; Yang B; Hu Y
    Bioorg Med Chem; 2008 Aug; 16(16):7646-53. PubMed ID: 18662884
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isoquinoline derivatives as potential acetylcholinesterase inhibitors.
    Markmee S; Ruchirawat S; Prachyawarakorn V; Ingkaninan K; Khorana N
    Bioorg Med Chem Lett; 2006 Apr; 16(8):2170-2. PubMed ID: 16483771
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and efficacy of 1-[bis(4-fluorophenyl)-methyl]piperazine derivatives for acetylcholinesterase inhibition, as a stimulant of central cholinergic neurotransmission in Alzheimer's disease.
    Sadashiva CT; Narendra Sharath Chandra JN; Ponnappa KC; Veerabasappa Gowda T; Rangappa KS
    Bioorg Med Chem Lett; 2006 Aug; 16(15):3932-6. PubMed ID: 16735118
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acetylcholinesterase noncovalent inhibitors based on a polyamine backbone for potential use against Alzheimer's disease.
    Melchiorre C; Andrisano V; Bolognesi ML; Budriesi R; Cavalli A; Cavrini V; Rosini M; Tumiatti V; Recanatini M
    J Med Chem; 1998 Oct; 41(22):4186-9. PubMed ID: 9784091
    [No Abstract]   [Full Text] [Related]  

  • 20. Antioxidant, larvicidal and antiacetylcholinesterase activities of cashew nut shell liquid constituents.
    Oliveira MS; Morais SM; Magalhães DV; Batista WP; Vieira IG; Craveiro AA; de Manezes JE; Carvalho AF; de Lima GP
    Acta Trop; 2011 Mar; 117(3):165-70. PubMed ID: 20707981
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.