These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

415 related articles for article (PubMed ID: 19447402)

  • 1. Interfacial properties of methane/aqueous VC-713 solution under hydrate formation conditions.
    Peng BZ; Sun CY; Liu P; Liu YT; Chen J; Chen GJ
    J Colloid Interface Sci; 2009 Aug; 336(2):738-42. PubMed ID: 19447402
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Does SDS micellize under methane hydrate-forming conditions below the normal Krafft point?
    Zhang JS; Lee S; Lee JW
    J Colloid Interface Sci; 2007 Nov; 315(1):313-8. PubMed ID: 17681521
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ study of mass transfer in aqueous solutions under high pressures via Raman spectroscopy: a new method for the determination of diffusion coefficients of methane in water near hydrate formation conditions.
    Lu WJ; Chou IM; Burruss RC; Yang MZ
    Appl Spectrosc; 2006 Feb; 60(2):122-9. PubMed ID: 16542563
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The interface between water and a hydrophobic gas.
    Reed SK; Westacott RE
    Phys Chem Chem Phys; 2008 Aug; 10(31):4614-22. PubMed ID: 18665311
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The growth of structure I methane hydrate from molecular dynamics simulations.
    Tung YT; Chen LJ; Chen YP; Lin ST
    J Phys Chem B; 2010 Aug; 114(33):10804-13. PubMed ID: 20669917
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solubility measurement of methane in aqueous solution of sodium dodecyl sulfate at ambient temperature and near hydrate conditions.
    Peng BZ; Chen GJ; Luo H; Sun CY
    J Colloid Interface Sci; 2006 Dec; 304(2):558-61. PubMed ID: 17010363
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermodynamic properties and phase transtions in the H2O/CO2/CH4 system.
    Svandal A; Kuznetsova T; Kvamme B
    Phys Chem Chem Phys; 2006 Apr; 8(14):1707-13. PubMed ID: 16633655
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular dynamics study on the growth of structure I methane hydrate in aqueous solution of sodium chloride.
    Tung YT; Chen LJ; Chen YP; Lin ST
    J Phys Chem B; 2012 Dec; 116(48):14115-25. PubMed ID: 23137227
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrate film growth on the surface of a gas bubble suspended in water.
    Peng BZ; Dandekar A; Sun CY; Luo H; Ma QL; Pang WX; Chen GJ
    J Phys Chem B; 2007 Nov; 111(43):12485-93. PubMed ID: 17929860
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surfactant adsorption and interfacial tension investigations on cyclopentane hydrate.
    Aman ZM; Olcott K; Pfeiffer K; Sloan ED; Sum AK; Koh CA
    Langmuir; 2013 Feb; 29(8):2676-82. PubMed ID: 23363244
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrate formation at the methane/water interface on the molecular scale.
    Koga T; Wong J; Endoh MK; Mahajan D; Gutt C; Satija SK
    Langmuir; 2010 Apr; 26(7):4627-30. PubMed ID: 20229992
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonequilibrium adiabatic molecular dynamics simulations of methane clathrate hydrate decomposition.
    Alavi S; Ripmeester JA
    J Chem Phys; 2010 Apr; 132(14):144703. PubMed ID: 20406006
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Properties of inhibitors of methane hydrate formation via molecular dynamics simulations.
    Anderson BJ; Tester JW; Borghi GP; Trout BL
    J Am Chem Soc; 2005 Dec; 127(50):17852-62. PubMed ID: 16351116
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methane hydrate formation and decomposition: structural studies via neutron diffraction and empirical potential structure refinement.
    Thompson H; Soper AK; Buchanan P; Aldiwan N; Creek JL; Koh CA
    J Chem Phys; 2006 Apr; 124(16):164508. PubMed ID: 16674147
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of additives and metal rods on the nucleation and growth of gas hydrates.
    Li J; Liang D; Guo K; Wang R
    J Colloid Interface Sci; 2005 Mar; 283(1):223-30. PubMed ID: 15694442
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiscale approach to CO2 hydrate formation in aqueous solution: phase field theory and molecular dynamics. Nucleation and growth.
    Tegze G; Pusztai T; Tóth G; Gránásy L; Svandal A; Buanes T; Kuznetsova T; Kvamme B
    J Chem Phys; 2006 Jun; 124(23):234710. PubMed ID: 16821944
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clustering structure of aqueous solution of kinetic inhibitor of gas hydrates.
    Ohtake M; Yamamoto Y; Kawamura T; Wakisaka A; de Souza WF; de Freitas AM
    J Phys Chem B; 2005 Sep; 109(35):16879-85. PubMed ID: 16853148
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of nucleation of methane hydrate crystals: Interfacial theory and molecular simulation.
    Mirzaeifard S; Servio P; Rey AD
    J Colloid Interface Sci; 2019 Dec; 557():556-567. PubMed ID: 31550648
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular dynamics study of methane hydrate formation at a water/methane interface.
    Zhang J; Hawtin RW; Yang Y; Nakagava E; Rivero M; Choi SK; Rodger PM
    J Phys Chem B; 2008 Aug; 112(34):10608-18. PubMed ID: 18671369
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Can the dodecahedral water cluster naturally form in methane aqueous solutions? A molecular dynamics study on the hydrate nucleation mechanisms.
    Guo GJ; Zhang YG; Li M; Wu CH
    J Chem Phys; 2008 May; 128(19):194504. PubMed ID: 18500877
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.