These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 1944761)

  • 21. Substrate specificity of uptake of diamines in mouse brain slices.
    Lajtha A; Sershen H
    Arch Biochem Biophys; 1974 Dec; 165(2):539-47. PubMed ID: 4155271
    [No Abstract]   [Full Text] [Related]  

  • 22. Further studies on amino acid transport in murine P388 leukemia cells in vitro. Presence of system y+.
    Lazarus P; Panasci LC
    Biochim Biophys Acta; 1987 Apr; 898(2):154-8. PubMed ID: 3103685
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Developmental changes in the neutral alpha-amino acid transport systems of rat brain over the first three weeks after birth.
    Riggs TR; Pote KG; Im HS; Huff DW
    J Neurochem; 1984 May; 42(5):1251-9. PubMed ID: 6707628
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bimodal effects of cellular amino acids on Na+-dependent amino acid transport in Ehrlich cells.
    Johnstone RM; Laris PC
    Biochim Biophys Acta; 1980 Jul; 599(2):715-30. PubMed ID: 7407111
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Uptake of neutral alpha- and beta-amino acids by human proximal tubular cells.
    Jessen H; Røigaard H; Jacobsen C
    Biochim Biophys Acta; 1996 Jul; 1282(2):225-32. PubMed ID: 8703977
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Somatostatin and CCK-8 modulate release of striatal amino acids: role of dopamine receptors.
    Arnerić SP; Meeley MP; Reis DJ
    Peptides; 1986; 7(1):97-103. PubMed ID: 2872662
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cerebral amino acid transport in vitro during development: a kinetic analysis.
    Levi G
    Arch Biochem Biophys; 1970 May; 138(1):347-9. PubMed ID: 5446348
    [No Abstract]   [Full Text] [Related]  

  • 28. Tissue distribution, metabolism, anticonvulsant efficacy and effect on brain amino acid levels of the glia-selective gamma-aminobutyric acid transport inhibitor 4,5,6,7-tetrahydroisoxazolo[4,5-c]pyridin-3-ol in mice and chicks.
    Schousboe A; Hjeds H; Engler J; Krogsgaard-Larsen P; Wood JD
    J Neurochem; 1986 Sep; 47(3):758-63. PubMed ID: 3734800
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Puromycin effect on amino acid transport: differential rates of carrier protein turnover.
    Phang JM; Valle DL; Fisher L; Granger A
    Am J Physiol; 1975 Jan; 228(1):23-6. PubMed ID: 1147014
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Changes in free amino acid concentrations in serum, brain, and CSF throughout embryogenesis.
    Huether G; Lajtha A
    Neurochem Res; 1991 Feb; 16(2):145-50. PubMed ID: 1679206
    [TBL] [Abstract][Full Text] [Related]  

  • 31. GABA, hypotaurine and taurine transport in brain slices from developing mouse.
    Oja SS; Kontro P
    Dev Neurosci; 1983-1984; 6(4-5):271-7. PubMed ID: 6680690
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cation dependence of hypotaurine uptake in mouse brain slices.
    Kontro P; Oja SS
    J Neurochem; 1981 Aug; 37(2):297-304. PubMed ID: 7264661
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hormonal regulation of hepatic amino acid transport.
    Kilberg MS; Neuhaus OW
    J Supramol Struct; 1977; 6(2):191-204. PubMed ID: 198613
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characteristics of acidic, basic and neutral amino acid transport in the perfused rat hindlimb.
    Hundal HS; Rennie MJ; Watt PW
    J Physiol; 1989 Jan; 408():93-114. PubMed ID: 2506342
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sodium-stimulated amino acid uptake into isolated membrane vesicles from Balb/c 3T3 cells transformed by simian virus 40.
    Quinlan DC; Parnes JR; Shalom R; Garvey TQ; Isselbacher KJ; Hochstadt J
    Proc Natl Acad Sci U S A; 1976 May; 73(5):1631-5. PubMed ID: 179092
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Placental amino acid uptake. IV. Transport microvillous membrane vesicles.
    Ruzycki SM; Kelley LK; Smith CH
    Am J Physiol; 1978 Jan; 234(1):C27-35. PubMed ID: 623238
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Basolateral amino acid transport systems in the perfused exocrine pancreas: sodium-dependency and kinetic interactions between influx and efflux mechanisms.
    Mann GE; Peran S
    Biochim Biophys Acta; 1986 Jun; 858(2):263-74. PubMed ID: 3087423
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Maintenance of glucagon-stimulated system A amino acid transport activity in rat liver plasma membrane vesicles.
    Schenerman MA; Kilberg MS
    Biochim Biophys Acta; 1986 Apr; 856(3):428-36. PubMed ID: 3964688
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Amino acid transport in isolated hepatocytes from streptozotocin-diabetic rats.
    Samson M; Fehlmann M; Dolais-Kitabgi J; Freychet P
    Diabetes; 1980 Dec; 29(12):996-1000. PubMed ID: 7439542
    [TBL] [Abstract][Full Text] [Related]  

  • 40. K+ amino acid transporter KAAT1 mutant Y147F has increased transport activity and altered substrate selectivity.
    Liu Z; Stevens BR; Feldman DH; Hediger MA; Harvey WR
    J Exp Biol; 2003 Jan; 206(Pt 2):245-54. PubMed ID: 12477895
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.