These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 19447666)

  • 1. Development of a 4-axis load cell used for lumbar interbody load measurements.
    Demetropoulos CK; Morgan CR; Sengupta DK; Herkowitz HN
    Med Eng Phys; 2009 Sep; 31(7):846-51. PubMed ID: 19447666
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An in vitro biomechanical investigation: variable positioning of leopard carbon fiber interbody cages.
    Quigley KJ; Alander DH; Bledsoe JG
    J Spinal Disord Tech; 2008 Aug; 21(6):442-7. PubMed ID: 18679101
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interbody device endplate engagement effects on motion segment biomechanics.
    Buttermann GR; Beaubien BP; Freeman AL; Stoll JE; Chappuis JL
    Spine J; 2009 Jul; 9(7):564-73. PubMed ID: 19457722
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct real-time measurement of in vivo forces in the lumbar spine.
    Ledet EH; Tymeson MP; DiRisio DJ; Cohen B; Uhl RL
    Spine J; 2005; 5(1):85-94. PubMed ID: 15653089
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accuracy and repeatability of a new method for measuring facet loads in the lumbar spine.
    Wilson DC; Niosi CA; Zhu QA; Oxland TR; Wilson DR
    J Biomech; 2006; 39(2):348-53. PubMed ID: 16321637
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The use of surface strain data and a neural networks solution method to determine lumbar facet joint loads during in vitro spine testing.
    Sawa AG; Crawford NR
    J Biomech; 2008 Aug; 41(12):2647-53. PubMed ID: 18657814
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro study of shear force on interbody implants.
    Hitchcock R; Sears W; Gillies RM; Milthorpe B; Walsh WR
    J Spinal Disord Tech; 2006 Feb; 19(1):32-6. PubMed ID: 16462216
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The dynamic flexion/extension properties of the lumbar spine in vitro using a novel pendulum system.
    Crisco JJ; Fujita L; Spenciner DB
    J Biomech; 2007; 40(12):2767-73. PubMed ID: 17367798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prospective design delineation and subsequent in vitro evaluation of a new posterior dynamic stabilization system.
    Wilke HJ; Heuer F; Schmidt H
    Spine (Phila Pa 1976); 2009 Feb; 34(3):255-61. PubMed ID: 19179920
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In situ contact analysis of the prosthesis components of Prodisc-L in lumbar spine following total disc replacement.
    Chen WM; Park C; Lee K; Lee S
    Spine (Phila Pa 1976); 2009 Sep; 34(20):E716-23. PubMed ID: 19752690
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomechanical comparison of a two-level Maverick disc replacement with a hybrid one-level disc replacement and one-level anterior lumbar interbody fusion.
    Erkan S; Rivera Y; Wu C; Mehbod AA; Transfeldt EE
    Spine J; 2009 Oct; 9(10):830-5. PubMed ID: 19477692
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomechanical evaluation and comparison of polyetheretherketone rod system to traditional titanium rod fixation.
    Ponnappan RK; Serhan H; Zarda B; Patel R; Albert T; Vaccaro AR
    Spine J; 2009 Mar; 9(3):263-7. PubMed ID: 18838341
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The invention of new anterior spinal instrumentation prototype: a structural analysis of KKU expandable cage.
    Sae-Jung S; Jirarattanaphochai K; Saengnipanthkul S
    J Med Assoc Thai; 2007 Aug; 90(8):1621-6. PubMed ID: 17926993
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and calibration of load sensing orthopaedic implants.
    Bergmann G; Graichen F; Rohlmann A; Westerhoff P; Heinlein B; Bender A; Ehrig R
    J Biomech Eng; 2008 Apr; 130(2):021009. PubMed ID: 18412496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measuring compressive loads on a 'smart' lumbar interbody fusion cage: Proof of concept.
    Ramakrishna VAS; Chamoli U; Mukhopadhyay SC; Diwan AD; Prusty BG
    J Biomech; 2023 Jan; 147():111440. PubMed ID: 36640615
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shear force measurements on low- and high-stiffness posterior fusion devices.
    Melnyk AD; Chak JD; Cripton PA; Dvorak MF; Oxland TR
    Med Eng Phys; 2012 Nov; 34(9):1260-7. PubMed ID: 22284671
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Loads on a telemeterized vertebral body replacement measured in three patients within the first postoperative month.
    Rohlmann A; Graichen F; Bender A; Kayser R; Bergmann G
    Clin Biomech (Bristol); 2008 Feb; 23(2):147-58. PubMed ID: 17983694
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An instrumented implant for vertebral body replacement that measures loads in the anterior spinal column.
    Rohlmann A; Gabel U; Graichen F; Bender A; Bergmann G
    Med Eng Phys; 2007 Jun; 29(5):580-5. PubMed ID: 16931099
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The application of physiological loading using a dynamic, multi-axis spine simulator.
    Holsgrove TP; Miles AW; Gheduzzi S
    Med Eng Phys; 2017 Mar; 41():74-80. PubMed ID: 28043781
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transforaminal lumbar interbody fusion versus anterior lumbar interbody fusion as an adjunct to posterior instrumented correction of degenerative lumbar scoliosis: three year clinical and radiographic outcomes.
    Crandall DG; Revella J
    Spine (Phila Pa 1976); 2009 Sep; 34(20):2126-33. PubMed ID: 19752698
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.