BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 19447701)

  • 1. A framework for geometric analysis of vascular structures: application to cerebral aneurysms.
    Piccinelli M; Veneziani A; Steinman DA; Remuzzi A; Antiga L
    IEEE Trans Med Imaging; 2009 Aug; 28(8):1141-55. PubMed ID: 19447701
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational geometry for patient-specific reconstruction and meshing of blood vessels from MR and CT angiography.
    Antiga L; Ene-Iordache B; Remuzzi A
    IEEE Trans Med Imaging; 2003 May; 22(5):674-84. PubMed ID: 12846436
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An objective approach to digital removal of saccular aneurysms: technique and applications.
    Ford MD; Hoi Y; Piccinelli M; Antiga L; Steinman DA
    Br J Radiol; 2009 Jan; 82 Spec No 1():S55-61. PubMed ID: 20348537
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical simulations of flow in cerebral aneurysms: comparison of CFD results and in vivo MRI measurements.
    Rayz VL; Boussel L; Acevedo-Bolton G; Martin AJ; Young WL; Lawton MT; Higashida R; Saloner D
    J Biomech Eng; 2008 Oct; 130(5):051011. PubMed ID: 19045518
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Patient-specific computational modeling of cerebral aneurysms with multiple avenues of flow from 3D rotational angiography images.
    Castro MA; Putman CM; Cebral JR
    Acad Radiol; 2006 Jul; 13(7):811-21. PubMed ID: 16777554
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An integrated geometric modelling framework for patient-specific computational haemodynamic study on wide-ranged vascular network.
    Torii R; Oshima M
    Comput Methods Biomech Biomed Engin; 2012; 15(6):615-25. PubMed ID: 21736445
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An image-based modeling framework for patient-specific computational hemodynamics.
    Antiga L; Piccinelli M; Botti L; Ene-Iordache B; Remuzzi A; Steinman DA
    Med Biol Eng Comput; 2008 Nov; 46(11):1097-112. PubMed ID: 19002516
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Implicit reconstruction of vasculatures using bivariate piecewise algebraic splines.
    Hong Q; Li Q; Tian J
    IEEE Trans Med Imaging; 2012 Mar; 31(3):543-53. PubMed ID: 22020672
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of inlet boundary conditions on the local haemodynamics of intracranial aneurysms.
    Marzo A; Singh P; Reymond P; Stergiopulos N; Patel U; Hose R
    Comput Methods Biomech Biomed Engin; 2009 Aug; 12(4):431-44. PubMed ID: 19675980
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Outflow conditions for image-based hemodynamic models of the carotid bifurcation: implications for indicators of abnormal flow.
    Morbiducci U; Gallo D; Massai D; Consolo F; Ponzini R; Antiga L; Bignardi C; Deriu MA; Redaelli A
    J Biomech Eng; 2010 Sep; 132(9):091005. PubMed ID: 20815639
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PIV-measured versus CFD-predicted flow dynamics in anatomically realistic cerebral aneurysm models.
    Ford MD; Nikolov HN; Milner JS; Lownie SP; Demont EM; Kalata W; Loth F; Holdsworth DW; Steinman DA
    J Biomech Eng; 2008 Apr; 130(2):021015. PubMed ID: 18412502
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Blood flow in cerebral aneurysms: comparison of phase contrast magnetic resonance and computational fluid dynamics--preliminary experience.
    Karmonik C; Klucznik R; Benndorf G
    Rofo; 2008 Mar; 180(3):209-15. PubMed ID: 18278729
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vascular segmentation of phase contrast magnetic resonance angiograms based on statistical mixture modeling and local phase coherence.
    Chung AC; Noble JA; Summers P
    IEEE Trans Med Imaging; 2004 Dec; 23(12):1490-507. PubMed ID: 15575407
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative velocity investigations in cerebral arteries and aneurysms: 3D phase-contrast MR angiography, laser Doppler velocimetry and computational fluid dynamics.
    Hollnagel DI; Summers PE; Poulikakos D; Kollias SS
    NMR Biomed; 2009 Oct; 22(8):795-808. PubMed ID: 19412933
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In-vivo quantification of wall motion in cerebral aneurysms from 2D cine phase contrast magnetic resonance images.
    Karmonik C; Diaz O; Grossman R; Klucznik R
    Rofo; 2010 Feb; 182(2):140-50. PubMed ID: 19859863
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The challenges of imaging based computational fluid dynamics.
    Anayiotos A; Cheng G; Ito Y; Gray J; Agarwal R
    Stud Health Technol Inform; 2004; 103():225-32. PubMed ID: 15747925
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional morphometrical analysis of the M1 segment of the middle cerebral artery: potential clinical and neurosurgical implications.
    Zurada A; Gielecki J; Tubbs RS; Loukas M; Maksymowicz W; Cohen-Gadol AA; Michalak M; Chlebiej M; Zurada-ZieliƄska A
    Clin Anat; 2011 Jan; 24(1):34-46. PubMed ID: 20949492
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Image segmentation methods for intracranial aneurysm haemodynamic research.
    Sen Y; Qian Y; Avolio A; Morgan M
    J Biomech; 2014 Mar; 47(5):1014-9. PubMed ID: 24461575
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cardiovascular and lung mesh generation based on centerlines.
    Marchandise E; Geuzaine C; Remacle JF
    Int J Numer Method Biomed Eng; 2013 Jun; 29(6):665-82. PubMed ID: 23606344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preliminary study of hemodynamic distribution in patient-specific stenotic carotid bifurcation by image-based computational fluid dynamics.
    Xue YJ; Gao PY; Duan Q; Lin Y; Dai CB
    Acta Radiol; 2008 Jun; 49(5):558-65. PubMed ID: 18568543
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.