These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 19447701)

  • 21. Robust 3-D modeling of vasculature imagery using superellipsoids.
    Tyrrell JA; di Tomaso E; Fuja D; Tong R; Kozak K; Jain RK; Roysam B
    IEEE Trans Med Imaging; 2007 Feb; 26(2):223-37. PubMed ID: 17304736
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Overestimation of cerebral aneurysm wall thickness by black blood MRI?
    Steinman DA; Antiga L; Wasserman BA
    J Magn Reson Imaging; 2010 Mar; 31(3):766. PubMed ID: 20187225
    [No Abstract]   [Full Text] [Related]  

  • 23. Tuberous sclerosis complex with multiple intracranial aneurysms in an infant.
    Hung PC; Wang HS; Chou ML; Wong AM
    Pediatr Neurol; 2008 Nov; 39(5):365-7. PubMed ID: 18940564
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sensitivity of hemodynamics in a patient specific cerebral aneurysm to vascular geometry and blood rheology.
    Gambaruto AM; Janela J; Moura A; Sequeira A
    Math Biosci Eng; 2011 Apr; 8(2):409-23. PubMed ID: 21631137
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Computational fluid dynamics modeling of intracranial aneurysms: qualitative comparison with cerebral angiography.
    Cebral JR; Pergolizzi RS; Putman CM
    Acad Radiol; 2007 Jul; 14(7):804-13. PubMed ID: 17574131
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Automatic aneurysm neck detection using surface Voronoi diagrams.
    Cárdenes R; Pozo JM; Bogunovic H; Larrabide I; Frangi AF
    IEEE Trans Med Imaging; 2011 Oct; 30(10):1863-76. PubMed ID: 21622072
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Full-hexahedral structured meshing for image-based computational vascular modeling.
    De Santis G; De Beule M; Van Canneyt K; Segers P; Verdonck P; Verhegghe B
    Med Eng Phys; 2011 Dec; 33(10):1318-25. PubMed ID: 21763174
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Aneurysm identification by analysis of the blood-vessel skeleton.
    Kohout J; Chiarini A; Clapworthy GJ; Klajnšek G
    Comput Methods Programs Biomed; 2013 Jan; 109(1):32-47. PubMed ID: 22989925
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Brain blood vessel segmentation using line-shaped profiles.
    Babin D; Pižurica A; De Vylder J; Vansteenkiste E; Philips W
    Phys Med Biol; 2013 Nov; 58(22):8041-61. PubMed ID: 24168875
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Robust and objective decomposition and mapping of bifurcating vessels.
    Antiga L; Steinman DA
    IEEE Trans Med Imaging; 2004 Jun; 23(6):704-13. PubMed ID: 15191145
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A framework for automated and objective modification of tubular structures: Application to the internal carotid artery.
    Bergersen AW; Kjeldsberg HA; Valen-Sendstad K
    Int J Numer Method Biomed Eng; 2020 May; 36(5):e3330. PubMed ID: 32125768
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantitative Analysis of Geometry and Lateral Symmetry of Proximal Middle Cerebral Artery.
    Peter R; Emmer BJ; van Es ACGM; van Walsum T
    J Stroke Cerebrovasc Dis; 2017 Oct; 26(10):2427-2434. PubMed ID: 28716583
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Computational modeling of arterial biomechanics: insights into pathogenesis and treatment of vascular disease.
    Steinman DA; Vorp DA; Ethier CR
    J Vasc Surg; 2003 May; 37(5):1118-28. PubMed ID: 12756364
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Automated landmarking of bends in vascular structures: a comparative study with application to the internal carotid artery.
    Kjeldsberg HA; Bergersen AW; Valen-Sendstad K
    Biomed Eng Online; 2021 Nov; 20(1):120. PubMed ID: 34838018
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Variability of the planarity of the human aortic bifurcation.
    Friedman MH; Ding Z
    Med Eng Phys; 1998 Sep; 20(6):469-72. PubMed ID: 9796953
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A variational surface deformation and subdivision-based modeling framework for noisy and small n-furcated tube-like structures.
    Yuan F; Chuang KH; Liu J
    IEEE Trans Biomed Eng; 2013 Jun; 60(6):1589-98. PubMed ID: 23322754
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Polygonal surface processing and mesh generation tools for the numerical simulation of the cardiac function.
    Fedele M; Quarteroni A
    Int J Numer Method Biomed Eng; 2021 Apr; 37(4):e3435. PubMed ID: 33415829
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modeling and hexahedral meshing of cerebral arterial networks from centerlines.
    Decroocq M; Frindel C; Rougé P; Ohta M; Lavoué G
    Med Image Anal; 2023 Oct; 89():102912. PubMed ID: 37549612
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparative study of surface modeling methods for vascular structures.
    Wu J; Hu Q; Ma X
    Comput Med Imaging Graph; 2013 Jan; 37(1):4-14. PubMed ID: 23395401
    [TBL] [Abstract][Full Text] [Related]  

  • 40. pyNS: an open-source framework for 0D haemodynamic modelling.
    Manini S; Antiga L; Botti L; Remuzzi A
    Ann Biomed Eng; 2015 Jun; 43(6):1461-73. PubMed ID: 25549775
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.