BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 1944771)

  • 1. Studies on the partially uncoupled oxidation of tetrahydropterins by phenylalanine hydroxylase.
    Davis MD; Kaufman S
    Neurochem Res; 1991 Jul; 16(7):813-9. PubMed ID: 1944771
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of "uncoupled" tetrahydropterin oxidation by phenylalanine hydroxylase.
    Dix TA; Benkovic SJ
    Biochemistry; 1985 Oct; 24(21):5839-46. PubMed ID: 4084494
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence for the formation of the 4a-carbinolamine during the tyrosine-dependent oxidation of tetrahydrobiopterin by rat liver phenylalanine hydroxylase.
    Davis MD; Kaufman S
    J Biol Chem; 1989 May; 264(15):8585-96. PubMed ID: 2722790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The tyrosine-dependent oxidation of tetrahydropterins by lysolecithin-activated rat liver phenylalanine hydroxylase.
    Davis MD; Kaufman S
    J Biol Chem; 1988 Nov; 263(33):17312-6. PubMed ID: 3182848
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Products of the tyrosine-dependent oxidation of tetrahydrobiopterin by rat liver phenylalanine hydroxylase.
    Davis MD; Kaufman S
    Arch Biochem Biophys; 1993 Jul; 304(1):9-16. PubMed ID: 8323303
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the mechanism of action of phenylalanine hydroxylase.
    Lazarus RA; Dietrich RF; Wallick DE; Benkovic SJ
    Biochemistry; 1981 Nov; 20(24):6834-41. PubMed ID: 7317357
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 7-Tetrahydrobiopterin is an uncoupled cofactor for rat hepatic phenylalanine hydroxylase.
    Davis MD; Kaufman S
    FEBS Lett; 1991 Jul; 285(1):17-20. PubMed ID: 2065777
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reaction of rat liver phenylalanine hydroxylase with fatty acid hydroperoxides. Characterization and mechanism.
    Hill MA; Marota JJ; Shiman R
    J Biol Chem; 1988 Apr; 263(12):5646-55. PubMed ID: 3356704
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conversion of 6-substituted tetrahydropterins to 7-isomers via phenylalanine hydroxylase-generated intermediates.
    Davis MD; Kaufman S; Milstien S
    Proc Natl Acad Sci U S A; 1991 Jan; 88(2):385-9. PubMed ID: 1988938
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stereoselective effects in the interactions of pterin cofactors with rat-liver phenylalanine 4-monooxygenase.
    Haavik J; Døskeland AP; Flatmark T
    Eur J Biochem; 1986 Oct; 160(1):1-8. PubMed ID: 3769914
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phenylalanine hydroxylase: absolute configuration and source of oxygen of the 4a-hydroxytetrahydropterin species.
    Dix TA; Bollag GE; Domanico PL; Benkovic SJ
    Biochemistry; 1985 Jun; 24(12):2955-8. PubMed ID: 4016080
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation and characterization of tetrahydropterin oxidation products generated in the tyrosine 3-monooxygenase (tyrosine hydroxylase) reaction.
    Haavik J; Flatmark T
    Eur J Biochem; 1987 Oct; 168(1):21-6. PubMed ID: 2889594
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phenylalanine hydroxylase from Chromobacterium violaceum. Uncoupled oxidation of tetrahydropterin and the role of iron in hyroxylation.
    Chen D; Frey PA
    J Biol Chem; 1998 Oct; 273(40):25594-601. PubMed ID: 9748224
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparative study of Drosophila phenylalanine hydroxylase with a natural and a synthetic tetrahydropterin as cofactor.
    Bel Y; Jacobson KB; Ferré J
    Comp Biochem Physiol B; 1992 Nov; 103(3):557-62. PubMed ID: 1458831
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insights into the catalytic mechanisms of phenylalanine and tryptophan hydroxylase from kinetic isotope effects on aromatic hydroxylation.
    Pavon JA; Fitzpatrick PF
    Biochemistry; 2006 Sep; 45(36):11030-7. PubMed ID: 16953590
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic mechanism of phenylalanine hydroxylase: intrinsic binding and rate constants from single-turnover experiments.
    Roberts KM; Pavon JA; Fitzpatrick PF
    Biochemistry; 2013 Feb; 52(6):1062-73. PubMed ID: 23327364
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Demonstration of a peroxide shunt in the tetrahydropterin-dependent aromatic amino acid monooxygenases.
    Pavon JA; Fitzpatrick PF
    J Am Chem Soc; 2009 Apr; 131(13):4582-3. PubMed ID: 19281164
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studies on the phenylalanine hydroxylase system in liver slices.
    Milstien S; Kaufman S
    J Biol Chem; 1975 Jun; 250(12):4777-81. PubMed ID: 124732
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 7-Substituted pterins: formation during phenylalanine hydroxylation in the absence of dehydratase.
    Curtius HC; Adler C; Rebrin I; Heizmann C; Ghisla S
    Biochem Biophys Res Commun; 1990 Nov; 172(3):1060-6. PubMed ID: 2244891
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Order of substrate binding in bacterial phenylalanine hydroxylase and its mechanistic implication for pterin-dependent oxygenases.
    Volner A; Zoidakis J; Abu-Omar MM
    J Biol Inorg Chem; 2003 Jan; 8(1-2):121-8. PubMed ID: 12459906
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.