These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

351 related articles for article (PubMed ID: 19447723)

  • 1. Automatic recognition of gait patterns exhibiting patellofemoral pain syndrome using a support vector machine approach.
    Lai DT; Levinger P; Begg RK; Gilleard WL; Palaniswami M
    IEEE Trans Inf Technol Biomed; 2009 Sep; 13(5):810-7. PubMed ID: 19447723
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of patellofemoral pain syndrome using a Support Vector Machine approach.
    Lai DT; Levinger P; Begg RK; Gilleard W; Palaniswami M
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():3144-7. PubMed ID: 18002662
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Support vector machines for automated gait classification.
    Begg RK; Palaniswami M; Owen B
    IEEE Trans Biomed Eng; 2005 May; 52(5):828-38. PubMed ID: 15887532
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A machine learning approach for automated recognition of movement patterns using basic, kinetic and kinematic gait data.
    Begg R; Kamruzzaman J
    J Biomech; 2005 Mar; 38(3):401-8. PubMed ID: 15652537
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Subject recognition based on ground reaction force measurements of gait signals.
    Moustakidis SP; Theocharis JB; Giakas G
    IEEE Trans Syst Man Cybern B Cybern; 2008 Dec; 38(6):1476-85. PubMed ID: 19022720
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Walking kinematics in individuals with patellofemoral pain syndrome: a case-control study.
    Barton CJ; Levinger P; Webster KE; Menz HB
    Gait Posture; 2011 Feb; 33(2):286-91. PubMed ID: 21194952
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinematic and kinetic features of normal level walking in patellofemoral pain syndrome: more than a sagittal plane alteration.
    Paoloni M; Mangone M; Fratocchi G; Murgia M; Saraceni VM; Santilli V
    J Biomech; 2010 Jun; 43(9):1794-8. PubMed ID: 20188373
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Support vector machines for detecting age-related changes in running kinematics.
    Fukuchi RK; Eskofier BM; Duarte M; Ferber R
    J Biomech; 2011 Feb; 44(3):540-2. PubMed ID: 20980005
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Support vector machines and other pattern recognition approaches to the diagnosis of cerebral palsy gait.
    Kamruzzaman J; Begg RK
    IEEE Trans Biomed Eng; 2006 Dec; 53(12 Pt 1):2479-90. PubMed ID: 17153205
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tibia and rearfoot motion and ground reaction forces in subjects with patellofemoral pain syndrome during walking.
    Levinger P; Gilleard W
    Gait Posture; 2007 Jan; 25(1):2-8. PubMed ID: 16483778
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative sensory testing of patients with long lasting Patellofemoral pain syndrome.
    Jensen R; Hystad T; Kvale A; Baerheim A
    Eur J Pain; 2007 Aug; 11(6):665-76. PubMed ID: 17204440
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automatic classification of asymptomatic and osteoarthritis knee gait patterns using kinematic data features and the nearest neighbor classifier.
    Mezghani N; Husse S; Boivin K; Turcot K; Aissaoui R; Hagemeister N; de Guise JA
    IEEE Trans Biomed Eng; 2008 Mar; 55(3):1230-2. PubMed ID: 18334419
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of real-time gait retraining on hip kinematics, pain and function in subjects with patellofemoral pain syndrome.
    Noehren B; Scholz J; Davis I
    Br J Sports Med; 2011 Jul; 45(9):691-6. PubMed ID: 20584755
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Foot biomechanics and initial effects of infrapatellar strap on gait parameters in patients with unilateral patellofemoral pain syndrome.
    Bek N; Kinikli Gİ; Callaghan MJ; Atay OA
    Foot (Edinb); 2011 Sep; 21(3):114-8. PubMed ID: 21146397
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Feature extraction via KPCA for classification of gait patterns.
    Wu J; Wang J; Liu L
    Hum Mov Sci; 2007 Jun; 26(3):393-411. PubMed ID: 17509708
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automated design of robust discriminant analysis classifier for foot pressure lesions using kinematic data.
    Goulermas JY; Findlow AH; Nester CJ; Howard D; Bowker P
    IEEE Trans Biomed Eng; 2005 Sep; 52(9):1549-62. PubMed ID: 16189968
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wavelet-based feature extraction for support vector machines for screening balance impairments in the elderly.
    Khandoker AH; Lai DT; Begg RK; Palaniswami M
    IEEE Trans Neural Syst Rehabil Eng; 2007 Dec; 15(4):587-97. PubMed ID: 18198717
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An automatic system for the analysis and classification of human atrial fibrillation patterns from intracardiac electrograms.
    Nollo G; Marconcini M; Faes L; Bovolo F; Ravelli F; Bruzzone L
    IEEE Trans Biomed Eng; 2008 Sep; 55(9):2275-85. PubMed ID: 18713697
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automatic classification of athletes with residual functional deficits following concussion by means of EEG signal using support vector machine.
    Cao C; Tutwiler RL; Slobounov S
    IEEE Trans Neural Syst Rehabil Eng; 2008 Aug; 16(4):327-35. PubMed ID: 18701381
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Frontal plane leg alignment and muscular activity during maximum eccentric contractions in individuals with and without patellofemoral pain syndrome.
    Liebensteiner MC; Szubski C; Raschner C; Krismer M; Burtscher M; Platzer HP; Deibl M; Dirnberger E
    Knee; 2008 Jun; 15(3):180-6. PubMed ID: 18295488
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.