These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

351 related articles for article (PubMed ID: 19447723)

  • 21. The application of support vector machines for detecting recovery from knee replacement surgery using spatio-temporal gait parameters.
    Levinger P; Lai DT; Begg RK; Webster KE; Feller JA
    Gait Posture; 2009 Jan; 29(1):91-6. PubMed ID: 18752954
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Classification of electrocardiogram signals with support vector machines and particle swarm optimization.
    Melgani F; Bazi Y
    IEEE Trans Inf Technol Biomed; 2008 Sep; 12(5):667-77. PubMed ID: 18779082
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Is pain in patellofemoral pain syndrome neuropathic?
    Jensen R; Kvale A; Baerheim A
    Clin J Pain; 2008 Jun; 24(5):384-94. PubMed ID: 18496302
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Support vector machines for automated recognition of obstructive sleep apnea syndrome from ECG recordings.
    Khandoker AH; Palaniswami M; Karmakar CK
    IEEE Trans Inf Technol Biomed; 2009 Jan; 13(1):37-48. PubMed ID: 19129022
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pattern classification of kinematic and kinetic running data to distinguish gender, shod/barefoot and injury groups with feature ranking.
    Eskofier BM; Kraus M; Worobets JT; Stefanyshyn DJ; Nigg BM
    Comput Methods Biomech Biomed Engin; 2012; 15(5):467-74. PubMed ID: 21294006
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparison of different analysis techniques for the determination of muscle onset in individuals with patellofemoral pain syndrome.
    Uliam Kuriki H; Mícolis de Azevedo F; de Faria Negrão Filho R; Alves N
    J Electromyogr Kinesiol; 2011 Dec; 21(6):982-7. PubMed ID: 21889361
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A clinical study of the biomechanics of step descent using different treatment modalities for patellofemoral pain.
    Selfe J; Thewlis D; Hill S; Whitaker J; Sutton C; Richards J
    Gait Posture; 2011 May; 34(1):92-6. PubMed ID: 21570291
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Automated nonlinear feature generation and classification of foot pressure lesions.
    Mu T; Pataky TC; Findlow AH; Aung MS; Goulermas JY
    IEEE Trans Inf Technol Biomed; 2010 Mar; 14(2):418-24. PubMed ID: 19726270
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Kinematic analyses during stair descent in young women with patellofemoral pain.
    Grenholm A; Stensdotter AK; Häger-Ross C
    Clin Biomech (Bristol); 2009 Jan; 24(1):88-94. PubMed ID: 18986741
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Automatic classification of pathological gait patterns using ground reaction forces and machine learning algorithms.
    Alaqtash M; Sarkodie-Gyan T; Yu H; Fuentes O; Brower R; Abdelgawad A
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():453-7. PubMed ID: 22254346
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Patellofemoral pain syndrome.
    Collado H; Fredericson M
    Clin Sports Med; 2010 Jul; 29(3):379-98. PubMed ID: 20610028
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Application of the PSO-SVM model for recognition of control chart patterns.
    Ranaee V; Ebrahimzadeh A; Ghaderi R
    ISA Trans; 2010 Oct; 49(4):577-86. PubMed ID: 20663504
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [The study of SVM-based recognition of particles in urine sediment].
    Fu C; Xia SR; Zhang ZC
    Zhongguo Yi Liao Qi Xie Za Zhi; 2008 Nov; 32(6):409-12. PubMed ID: 19253571
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Kinematic gait characteristics associated with patellofemoral pain syndrome: a systematic review.
    Barton CJ; Levinger P; Menz HB; Webster KE
    Gait Posture; 2009 Nov; 30(4):405-16. PubMed ID: 19651515
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Support vector machine-based classification scheme for myoelectric control applied to upper limb.
    Oskoei MA; Hu H
    IEEE Trans Biomed Eng; 2008 Aug; 55(8):1956-65. PubMed ID: 18632358
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Support vector machine-based arrhythmia classification using reduced features of heart rate variability signal.
    Asl BM; Setarehdan SK; Mohebbi M
    Artif Intell Med; 2008 Sep; 44(1):51-64. PubMed ID: 18585905
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Disability in patients with chronic patellofemoral pain syndrome: a randomised controlled trial of VMO selective training versus general quadriceps strengthening.
    Syme G; Rowe P; Martin D; Daly G
    Man Ther; 2009 Jun; 14(3):252-63. PubMed ID: 18436468
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [A P300 detection algorithm based on F-score feature selection and support vector machines].
    Yang L; Li J; Yao Y; Wu X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Feb; 25(1):23-6, 52. PubMed ID: 18435249
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Application of irregular and unbalanced data to predict diabetic nephropathy using visualization and feature selection methods.
    Cho BH; Yu H; Kim KW; Kim TH; Kim IY; Kim SI
    Artif Intell Med; 2008 Jan; 42(1):37-53. PubMed ID: 17997291
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Prevalence of patellofemoral pain syndrome. Evaluation of the role of biomechanical malalignments and the role of sport activity].
    Tállay A; Kynsburg A; Tóth S; Szendi P; Pavlik A; Balogh E; Halasi T; Berkes I
    Orv Hetil; 2004 Oct; 145(41):2093-101. PubMed ID: 15586584
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.