BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 19447893)

  • 1. GTP cyclohydrolase I expression is regulated by nitric oxide: role of cyclic AMP.
    Kumar S; Sun X; Sharma S; Aggarwal S; Ravi K; Fineman JR; Black SM
    Am J Physiol Lung Cell Mol Physiol; 2009 Aug; 297(2):L309-17. PubMed ID: 19447893
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estradiol increases guanosine 5'-triphosphate cyclohydrolase expression via the nitric oxide-mediated activation of cyclic adenosine 5'-monophosphate response element binding protein.
    Sun X; Kumar S; Tian J; Black SM
    Endocrinology; 2009 Aug; 150(8):3742-52. PubMed ID: 19389836
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A key role for tetrahydrobiopterin-dependent endothelial NOS regulation in resistance arteries: studies in endothelial cell tetrahydrobiopterin-deficient mice.
    Chuaiphichai S; Crabtree MJ; Mcneill E; Hale AB; Trelfa L; Channon KM; Douglas G
    Br J Pharmacol; 2017 Apr; 174(8):657-671. PubMed ID: 28128438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GCH1 haplotype determines vascular and plasma biopterin availability in coronary artery disease effects on vascular superoxide production and endothelial function.
    Antoniades C; Shirodaria C; Van Assche T; Cunnington C; Tegeder I; Lötsch J; Guzik TJ; Leeson P; Diesch J; Tousoulis D; Stefanadis C; Costigan M; Woolf CJ; Alp NJ; Channon KM
    J Am Coll Cardiol; 2008 Jul; 52(2):158-65. PubMed ID: 18598896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resveratrol reverses endothelial nitric-oxide synthase uncoupling in apolipoprotein E knockout mice.
    Xia N; Daiber A; Habermeier A; Closs EI; Thum T; Spanier G; Lu Q; Oelze M; Torzewski M; Lackner KJ; Münzel T; Förstermann U; Li H
    J Pharmacol Exp Ther; 2010 Oct; 335(1):149-54. PubMed ID: 20610621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cell-autonomous role of endothelial GTP cyclohydrolase 1 and tetrahydrobiopterin in blood pressure regulation.
    Chuaiphichai S; McNeill E; Douglas G; Crabtree MJ; Bendall JK; Hale AB; Alp NJ; Channon KM
    Hypertension; 2014 Sep; 64(3):530-40. PubMed ID: 24777984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative regulation of intracellular endothelial nitric-oxide synthase (eNOS) coupling by both tetrahydrobiopterin-eNOS stoichiometry and biopterin redox status: insights from cells with tet-regulated GTP cyclohydrolase I expression.
    Crabtree MJ; Tatham AL; Al-Wakeel Y; Warrick N; Hale AB; Cai S; Channon KM; Alp NJ
    J Biol Chem; 2009 Jan; 284(2):1136-44. PubMed ID: 19011239
    [TBL] [Abstract][Full Text] [Related]  

  • 8. C-reactive protein decreases endothelial nitric oxide synthase activity via uncoupling.
    Singh U; Devaraj S; Vasquez-Vivar J; Jialal I
    J Mol Cell Cardiol; 2007 Dec; 43(6):780-91. PubMed ID: 17942113
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preserving mitochondrial function prevents the proteasomal degradation of GTP cyclohydrolase I.
    Sharma S; Sun X; Kumar S; Rafikov R; Aramburo A; Kalkan G; Tian J; Rehmani I; Kallarackal S; Fineman JR; Black SM
    Free Radic Biol Med; 2012 Jul; 53(2):216-29. PubMed ID: 22583703
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GTP cyclohydrolase I phosphorylation and interaction with GTP cyclohydrolase feedback regulatory protein provide novel regulation of endothelial tetrahydrobiopterin and nitric oxide.
    Li L; Rezvan A; Salerno JC; Husain A; Kwon K; Jo H; Harrison DG; Chen W
    Circ Res; 2010 Feb; 106(2):328-36. PubMed ID: 19926872
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Critical role for tetrahydrobiopterin recycling by dihydrofolate reductase in regulation of endothelial nitric-oxide synthase coupling: relative importance of the de novo biopterin synthesis versus salvage pathways.
    Crabtree MJ; Tatham AL; Hale AB; Alp NJ; Channon KM
    J Biol Chem; 2009 Oct; 284(41):28128-28136. PubMed ID: 19666465
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Endothelium-specific GTP cyclohydrolase I overexpression accelerates refractory wound healing by suppressing oxidative stress in diabetes.
    Tie L; Li XJ; Wang X; Channon KM; Chen AF
    Am J Physiol Endocrinol Metab; 2009 Jun; 296(6):E1423-9. PubMed ID: 19336662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. C-terminus of heat shock protein 70-interacting protein-dependent GTP cyclohydrolase I degradation in lambs with increased pulmonary blood flow.
    Sun X; Fratz S; Sharma S; Hou Y; Rafikov R; Kumar S; Rehmani I; Tian J; Smith A; Schreiber C; Reiser J; Naumann S; Haag S; Hess J; Catravas JD; Patterson C; Fineman JR; Black SM
    Am J Respir Cell Mol Biol; 2011 Jul; 45(1):163-71. PubMed ID: 20870896
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Validating the GTP-cyclohydrolase 1-feedback regulatory complex as a therapeutic target using biophysical and in vivo approaches.
    Hussein D; Starr A; Heikal L; McNeill E; Channon KM; Brown PR; Sutton BJ; McDonnell JM; Nandi M
    Br J Pharmacol; 2015 Aug; 172(16):4146-57. PubMed ID: 26014146
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Endothelial cell-specific roles for tetrahydrobiopterin in myocardial function, cardiac hypertrophy, and response to myocardial ischemia-reperfusion injury.
    Chuaiphichai S; Chu SM; Carnicer R; Kelly M; Bendall JK; Simon JN; Douglas G; Crabtree MJ; Casadei B; Channon KM
    Am J Physiol Heart Circ Physiol; 2023 Apr; 324(4):H430-H442. PubMed ID: 36735402
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of cerebral microvasculature in transgenic mice with endothelium targeted over-expression of GTP-cyclohydrolase I.
    Santhanam AV; d'Uscio LV; Katusic ZS
    Brain Res; 2015 Nov; 1625():198-205. PubMed ID: 26343845
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ionizing radiation induces BH
    Yan T; Zhang T; Mu W; Qi Y; Guo S; Hu N; Zhao W; Zhang S; Wang Q; Shi L; Liu L
    Biochem Pharmacol; 2020 Oct; 180():114102. PubMed ID: 32562786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of reversal of high glucose-induced endothelial nitric oxide synthase uncoupling by tanshinone IIA in human endothelial cell line EA.hy926.
    Zhou ZW; Xie XL; Zhou SF; Li CG
    Eur J Pharmacol; 2012 Dec; 697(1-3):97-105. PubMed ID: 23063542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential effects of eNOS uncoupling on conduit and small arteries in GTP-cyclohydrolase I-deficient hph-1 mice.
    d'Uscio LV; Smith LA; Katusic ZS
    Am J Physiol Heart Circ Physiol; 2011 Dec; 301(6):H2227-34. PubMed ID: 21963838
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A pivotal role for tryptophan 447 in enzymatic coupling of human endothelial nitric oxide synthase (eNOS): effects on tetrahydrobiopterin-dependent catalysis and eNOS dimerization.
    Benson MA; Batchelor H; Chuaiphichai S; Bailey J; Zhu H; Stuehr DJ; Bhattacharya S; Channon KM; Crabtree MJ
    J Biol Chem; 2013 Oct; 288(41):29836-45. PubMed ID: 23965989
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.