These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 19447903)
61. Novel mechanistic insights into physiological signaling pathways mediated by mycobacterial Ser/Thr protein kinases. Bellinzoni M; Wehenkel AM; Durán R; Alzari PM Genes Immun; 2019 May; 20(5):383-393. PubMed ID: 31019252 [TBL] [Abstract][Full Text] [Related]
62. Differential regulation of the mitogen-activated protein kinases by pathogenic and nonpathogenic mycobacteria. Roach SK; Schorey JS Infect Immun; 2002 Jun; 70(6):3040-52. PubMed ID: 12010996 [TBL] [Abstract][Full Text] [Related]
63. Biochemical analysis of the NAD+-dependent malate dehydrogenase, a substrate of several serine/threonine protein kinases of Mycobacterium tuberculosis. Wang XM; Soetaert K; Peirs P; Kalai M; Fontaine V; Dehaye JP; Lefèvre P PLoS One; 2015; 10(4):e0123327. PubMed ID: 25860441 [TBL] [Abstract][Full Text] [Related]
64. The Mycobacterium tuberculosis transcriptional repressor EthR is negatively regulated by Serine/Threonine phosphorylation. Leiba J; Carrère-Kremer S; Blondiaux N; Dimala MM; Wohlkönig A; Baulard A; Kremer L; Molle V Biochem Biophys Res Commun; 2014 Apr; 446(4):1132-8. PubMed ID: 24667600 [TBL] [Abstract][Full Text] [Related]
65. A specific secretion system mediates PPE41 transport in pathogenic mycobacteria. Abdallah AM; Verboom T; Hannes F; Safi M; Strong M; Eisenberg D; Musters RJ; Vandenbroucke-Grauls CM; Appelmelk BJ; Luirink J; Bitter W Mol Microbiol; 2006 Nov; 62(3):667-79. PubMed ID: 17076665 [TBL] [Abstract][Full Text] [Related]
66. Mechanism of inducible nitric oxide synthase exclusion from mycobacterial phagosomes. Davis AS; Vergne I; Master SS; Kyei GB; Chua J; Deretic V PLoS Pathog; 2007 Dec; 3(12):e186. PubMed ID: 18069890 [TBL] [Abstract][Full Text] [Related]
67. Oliveira FM; Procopio VO; de Lima Menezes G; Silva RAD; Kipnis A; Junqueira-Kipnis AP Microorganisms; 2022 Mar; 10(4):. PubMed ID: 35456728 [No Abstract] [Full Text] [Related]
68. Differential gene expression in mononuclear phagocytes infected with pathogenic and non-pathogenic mycobacteria. McGarvey JA; Wagner D; Bermudez LE Clin Exp Immunol; 2004 Jun; 136(3):490-500. PubMed ID: 15147351 [TBL] [Abstract][Full Text] [Related]
69. Activation of phosphatidylinositol 3-kinase and c-Jun-N-terminal kinase cascades enhances NF-kappaB-dependent gene transcription in BCG-stimulated macrophages through promotion of p65/p300 binding. Darieva Z; Lasunskaia EB; Campos MN; Kipnis TL; Da Silva WD J Leukoc Biol; 2004 Apr; 75(4):689-97. PubMed ID: 14742634 [TBL] [Abstract][Full Text] [Related]
70. The Mycobacterium tuberculosis serine/threonine kinase PknL phosphorylates Rv2175c: mass spectrometric profiling of the activation loop phosphorylation sites and their role in the recruitment of Rv2175c. Canova MJ; Veyron-Churlet R; Zanella-Cleon I; Cohen-Gonsaud M; Cozzone AJ; Becchi M; Kremer L; Molle V Proteomics; 2008 Feb; 8(3):521-33. PubMed ID: 18175374 [TBL] [Abstract][Full Text] [Related]
71. Diverse effects of mycobacterial proline-proline-glutamic acid proteins upon interaction with host macrophages. Meng L; Tong J; Wang Q; Niu C; Gao Q FEMS Microbiol Lett; 2017 Feb; 364(4):. PubMed ID: 28130364 [TBL] [Abstract][Full Text] [Related]
72. Mycobacterium tuberculosis protein kinase K confers survival advantage during early infection in mice and regulates growth in culture and during persistent infection: implications for immune modulation. Malhotra V; Arteaga-Cortés LT; Clay G; Clark-Curtiss JE Microbiology (Reading); 2010 Sep; 156(Pt 9):2829-2841. PubMed ID: 20522497 [TBL] [Abstract][Full Text] [Related]
73. Entry and survival of pathogenic mycobacteria in macrophages. Pieters J Microbes Infect; 2001 Mar; 3(3):249-55. PubMed ID: 11358719 [TBL] [Abstract][Full Text] [Related]
74. Effective generation of reactive oxygen species in the mycobacterial phagosome requires K+ efflux from the bacterium. Butler RE; Cihlarova V; Stewart GR Cell Microbiol; 2010 Aug; 12(8):1186-93. PubMed ID: 20331644 [TBL] [Abstract][Full Text] [Related]
75. ESX Secretion-Associated Protein C From Guo Q; Bi J; Li M; Ge W; Xu Y; Fan W; Wang H; Zhang X Front Cell Infect Microbiol; 2019; 9():158. PubMed ID: 31134163 [No Abstract] [Full Text] [Related]
76. Targeting the messengers: Serine/threonine protein kinases as potential targets for antimycobacterial drug development. Khan MZ; Kaur P; Nandicoori VK IUBMB Life; 2018 Sep; 70(9):889-904. PubMed ID: 29934969 [TBL] [Abstract][Full Text] [Related]
77. Effects of Mycobacterium tuberculosis Rv1096 on mycobacterial cell division and modulation on macrophages. Deng G; Ji N; Shi X; Zhang W; Qin Y; Sha S; Yang S; Ma Y Microb Pathog; 2020 Apr; 141():103991. PubMed ID: 31978426 [TBL] [Abstract][Full Text] [Related]
78. Mycobacterium tuberculosis PPE25 and PPE26 proteins expressed in Mycobacterium smegmatis modulate cytokine secretion in mouse macrophages and enhance mycobacterial survival. Mi Y; Bao L; Gu D; Luo T; Sun C; Yang G Res Microbiol; 2017 Apr; 168(3):234-243. PubMed ID: 27351106 [TBL] [Abstract][Full Text] [Related]
79. Mycobacterium tuberculosis EsxO (Rv2346c) promotes bacillary survival by inducing oxidative stress mediated genomic instability in macrophages. Mohanty S; Dal Molin M; Ganguli G; Padhi A; Jena P; Selchow P; Sengupta S; Meuli M; Sander P; Sonawane A Tuberculosis (Edinb); 2016 Jan; 96():44-57. PubMed ID: 26786654 [TBL] [Abstract][Full Text] [Related]
80. Signalling inhibitors against Mycobacterium tuberculosis--early days of a new therapeutic concept in tuberculosis. Hegymegi-Barakonyi B; Székely R; Varga Z; Kiss R; Borbély G; Németh G; Bánhegyi P; Pató J; Greff Z; Horváth Z; Mészáros G; Marosfalvi J; Erōs D; Szántai-Kis C; Breza N; Garavaglia S; Perozzi S; Rizzi M; Hafenbradl D; Ko M; Av-Gay Y; Klebl BM; Orfi L; Kéri G Curr Med Chem; 2008; 15(26):2760-70. PubMed ID: 18991635 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]