BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 19447909)

  • 1. Two distinct pathways for metabolism of theophylline and caffeine are coexpressed in Pseudomonas putida CBB5.
    Yu CL; Louie TM; Summers R; Kale Y; Gopishetty S; Subramanian M
    J Bacteriol; 2009 Jul; 191(14):4624-32. PubMed ID: 19447909
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Different Catabolism Pathways Triggered by Various Methylxanthines in Caffeine-Tolerant Bacterium
    Ma YX; Wu XH; Wu HS; Dong ZB; Ye JH; Zheng XQ; Liang YR; Lu J
    J Microbiol Biotechnol; 2018 Jul; 28(7):1147-1155. PubMed ID: 29926702
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of a broad-specificity non-haem iron N-demethylase from Pseudomonas putida CBB5 capable of utilizing several purine alkaloids as sole carbon and nitrogen source.
    Summers RM; Louie TM; Yu CL; Subramanian M
    Microbiology (Reading); 2011 Feb; 157(Pt 2):583-592. PubMed ID: 20966097
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel, highly specific N-demethylases enable bacteria to live on caffeine and related purine alkaloids.
    Summers RM; Louie TM; Yu CL; Gakhar L; Louie KC; Subramanian M
    J Bacteriol; 2012 Apr; 194(8):2041-9. PubMed ID: 22328667
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Degradation of caffeine and related methylxanthines bySerratia marcescens isolated from soil under coffee cultivation.
    Mazzafera P; Olsson O; Sandberg G
    Microb Ecol; 1996 Mar; 31(2):199-207. PubMed ID: 24185743
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3-Methylxanthine production through biodegradation of theobromine by Aspergillus sydowii PT-2.
    Zhou B; Ma C; Zheng C; Xia T; Ma B; Liu X
    BMC Microbiol; 2020 Aug; 20(1):269. PubMed ID: 32854634
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation, characterization and application of theophylline-degrading Aspergillus fungi.
    Zhou B; Ma C; Xia T; Li X; Zheng C; Wu T; Liu X
    Microb Cell Fact; 2020 Mar; 19(1):72. PubMed ID: 32192512
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reactions of theophylline, theobromine and caffeine with Fenton's reagent--simulation of hepatic metabolism.
    Zbaida S; Kariv R; Fischer P; Gilhar D
    Xenobiotica; 1987 May; 17(5):617-21. PubMed ID: 3604265
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biotransformation of caffeine, paraxanthine, theophylline, and theobromine by polycyclic aromatic hydrocarbon-inducible cytochrome(s) P-450 in human liver microsomes.
    Campbell ME; Grant DM; Inaba T; Kalow W
    Drug Metab Dispos; 1987; 15(2):237-49. PubMed ID: 2882985
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct conversion of theophylline to 3-methylxanthine by metabolically engineered E. coli.
    Algharrawi KH; Summers RM; Gopishetty S; Subramanian M
    Microb Cell Fact; 2015 Dec; 14():203. PubMed ID: 26691652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biosynthesis of caffeine by tea-leaf extracts. Enzymic formation of theobromine from 7-methylxanthine and of caffeine from theobromine.
    Suzuki T; Takahashi E
    Biochem J; 1975 Jan; 146(1):87-96. PubMed ID: 238504
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of increased caffeine intake on the metabolism and pharmacokinetics of theophylline in man.
    Monks TJ; Lawrie CA; Caldwell J
    Biopharm Drug Dispos; 1981; 2(1):31-7. PubMed ID: 7236869
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The metabolism of caffeine by a Pseudomonas putida strain.
    Blecher R; Lingens F
    Hoppe Seylers Z Physiol Chem; 1977 Jul; 358(7):807-17. PubMed ID: 561017
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disposition of caffeine and its metabolites in man.
    Tang-Liu DD; Williams RL; Riegelman S
    J Pharmacol Exp Ther; 1983 Jan; 224(1):180-5. PubMed ID: 6848742
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decaffeination and measurement of caffeine content by addicted Escherichia coli with a refactored N-demethylation operon from Pseudomonas putida CBB5.
    Quandt EM; Hammerling MJ; Summers RM; Otoupal PB; Slater B; Alnahhas RN; Dasgupta A; Bachman JL; Subramanian MV; Barrick JE
    ACS Synth Biol; 2013 Jun; 2(6):301-7. PubMed ID: 23654268
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Secondary metabolism of theophylline biotransformation products in man--route of formation of 1-methyluric acid.
    Birkett DJ; Miners JO; Attwood J
    Br J Clin Pharmacol; 1983 Jan; 15(1):117-9. PubMed ID: 6849735
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioassay for Determining the Concentrations of Caffeine and Individual Methylxanthines in Complex Samples.
    Gutierrez AE; Shah P; Rex AE; Nguyen TC; Kenkare SP; Barrick JE; Mishler DM
    Appl Environ Microbiol; 2019 Dec; 85(23):. PubMed ID: 31540989
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of novel solid-phase extraction sorbent materials for high-performance liquid chromatography quantitation of caffeine metabolism products methylxanthines and methyluric acids in samples of biological origin.
    Georgia KA; Samanidou VF; Papadoyannis IN
    J Chromatogr B Biomed Sci Appl; 2001 Aug; 759(2):209-18. PubMed ID: 11499474
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Excretion and metabolism of a series of xanthines by the turtle Pseudemys scripta elegans.
    Vree TB; Vree JB; Nouws JF; Hekster YA; Hafkenscheid JC
    Vet Q; 1989 Jan; 11(1):58-60. PubMed ID: 2718350
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolism of N-methylpurines by a Pseudomonas putida strain isolated by enrichment on caffeine as the sole source of carbon and nitrogen.
    Woolfolk CA
    J Bacteriol; 1975 Sep; 123(3):1088-106. PubMed ID: 1158847
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.