BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

785 related articles for article (PubMed ID: 19448304)

  • 1. Kinetics of biodegradation of phenolic wastewater in a biofilm reactor.
    Lin YH; Hsien TY
    Water Sci Technol; 2009; 59(9):1703-11. PubMed ID: 19448304
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biodegradation of phenol with chromium(VI) reduction in an anaerobic fixed-biofilm process--kinetic model and reactor performance.
    Lin YH; Wu CL; Hsu CH; Li HL
    J Hazard Mater; 2009 Dec; 172(2-3):1394-401. PubMed ID: 19726129
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics of phenol degradation in an anaerobic fixed-biofilm process.
    Lin YH; Lee KK
    Water Environ Res; 2006 Jun; 78(6):598-606. PubMed ID: 16894986
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling the performance of biodegradation of textile wastewater using polyurethane foam sponge cube as a supporting medium.
    Lin YH
    Water Sci Technol; 2010; 62(12):2801-10. PubMed ID: 21123909
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetics of inorganic carbon utilization by microalgal biofilm in a flat plate photoreactor.
    Lin YH; Leu JY; Lan CR; Lin PH; Chang FL
    Chemosphere; 2003 Nov; 53(7):779-87. PubMed ID: 13129518
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of hydraulic retention time on the biodegradation of complex phenolic mixture from simulated coal wastewater in hybrid UASB reactors.
    Ramakrishnan A; Gupta SK
    J Hazard Mater; 2008 May; 153(1-2):843-51. PubMed ID: 17950527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics of nitrification in a fixed biofilm reactor using dewatered sludge-fly ash composite ceramic particle as a supporting medium.
    Lee MC; Lin YH; Yu HW
    Biodegradation; 2014 Nov; 25(6):849-65. PubMed ID: 25135313
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modelling and simulation of steady-state phenol degradation in a pulsed plate bioreactor with immobilised cells of Nocardia hydrocarbonoxydans.
    Shetty KV; Verma DK; Srinikethan G
    Bioprocess Biosyst Eng; 2011 Jan; 34(1):45-56. PubMed ID: 20563604
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulation study supporting wastewater treatment plant upgrading.
    Hvala N; Vrecko D; Burica O; Strazar M; Levstek M
    Water Sci Technol; 2002; 46(4-5):325-32. PubMed ID: 12361028
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative Kinetic Studies and Performance Evaluation of Biofilm and Biomass Characteristics of Pseudomonas fluorescens in Degrading Synthetic Phenolic Effluent in Inverse Fluidized Bed Biofilm Reactor.
    Begum SS; Radha KV
    Water Environ Res; 2016 May; 88(5):415-24. PubMed ID: 27131305
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A simplified model for the steady-state biofilm-activated sludge reactor.
    Fouad M; Bhargava R
    J Environ Manage; 2005 Feb; 74(3):245-53. PubMed ID: 15644264
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combined nitrification/denitrification in a membrane reactor.
    Walter B; Haase C; Räbiger N
    Water Res; 2005 Aug; 39(13):2781-8. PubMed ID: 16000209
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms of granular activated carbon anaerobic fluidized-bed process for treating phenols wastewater.
    Lao SG
    J Environ Sci (China); 2002 Jan; 14(1):132-5. PubMed ID: 11887310
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental study and modelling of Cr (VI) removal from wastewater using Lemna minor.
    Oporto C; Arce O; Van den Broeck E; Van der Bruggen B; Vandecasteele C
    Water Res; 2006 Apr; 40(7):1458-64. PubMed ID: 16540144
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Treatment of phenolic wastewater using agricultural wastes as an adsorbent in a sequencing batch reactor.
    Lee KM; Lim PE
    Water Sci Technol; 2003; 47(10):41-7. PubMed ID: 12862215
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phenolic refinery wastewater biodegradation by an expanded granular sludge bed reactor.
    Almendariz FJ; Meraz M; Olmos AD; Monroy O
    Water Sci Technol; 2005; 52(1-2):391-6. PubMed ID: 16180455
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calibration of hydrodynamic behavior and biokinetics for TOC removal modeling in biofilm reactors under different hydraulic conditions.
    Zeng M; Soric A; Roche N
    Bioresour Technol; 2013 Sep; 144():202-9. PubMed ID: 23871921
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling of a vapor-phase fungi bioreactor for the abatement of hexane: fluid dynamics and kinetic aspects.
    Spigno G; De Faveri DM
    Biotechnol Bioeng; 2005 Feb; 89(3):319-28. PubMed ID: 15619326
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of nutrient addition on phenol biodegradation rate in biofilm reactors for hypersaline wastewater treatment.
    Li Y; Lei Z; Zhang Z; Sugiura N
    Environ Technol; 2006 May; 27(5):511-20. PubMed ID: 16749619
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimizing sequencing batch reactor (SBR) reactor operation for treatment of dairy wastewater with aerobic granular sludge.
    Wichern M; Lübken M; Horn H
    Water Sci Technol; 2008; 58(6):1199-206. PubMed ID: 18845857
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 40.