These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 19448406)

  • 21. Noncoding RNAs, Emerging Regulators of Skeletal Muscle Development and Diseases.
    Nie M; Deng ZL; Liu J; Wang DZ
    Biomed Res Int; 2015; 2015():676575. PubMed ID: 26258142
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Regulation of Skeletal Muscle by microRNAs.
    Diniz GP; Wang DZ
    Compr Physiol; 2016 Jun; 6(3):1279-94. PubMed ID: 27347893
    [TBL] [Abstract][Full Text] [Related]  

  • 23. MicroRNA-mRNA regulatory networking fine-tunes the porcine muscle fiber type, muscular mitochondrial respiratory and metabolic enzyme activities.
    Liu X; Trakooljul N; Hadlich F; Muráni E; Wimmers K; Ponsuksili S
    BMC Genomics; 2016 Aug; 17():531. PubMed ID: 27485725
    [TBL] [Abstract][Full Text] [Related]  

  • 24. CDR1as/miRNAs-related regulatory mechanisms in muscle development and diseases.
    Kyei B; Li L; Yang L; Zhan S; Zhang H
    Gene; 2020 Mar; 730():144315. PubMed ID: 31904497
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Novel YY1-miR-1 regulatory circuit in skeletal myogenesis revealed by genome-wide prediction of YY1-miRNA network.
    Lu L; Zhou L; Chen EZ; Sun K; Jiang P; Wang L; Su X; Sun H; Wang H
    PLoS One; 2012; 7(2):e27596. PubMed ID: 22319554
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transcriptional profiling and miRNA-dependent regulatory network analysis of longissimus dorsi muscle during prenatal and adult stages in two distinct pig breeds.
    Siengdee P; Trakooljul N; Murani E; Schwerin M; Wimmers K; Ponsuksili S
    Anim Genet; 2013 Aug; 44(4):398-407. PubMed ID: 23506348
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Regulation of skeletal muscle development and disease by microRNAs.
    Liu N; Bassel-Duby R
    Results Probl Cell Differ; 2015; 56():165-90. PubMed ID: 25344671
    [TBL] [Abstract][Full Text] [Related]  

  • 28. MicroRNA control of muscle development and disease.
    Williams AH; Liu N; van Rooij E; Olson EN
    Curr Opin Cell Biol; 2009 Jun; 21(3):461-9. PubMed ID: 19278845
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Temporal correlation between differentiation factor expression and microRNAs in Holstein bovine skeletal muscle.
    Miretti S; Volpe MG; Martignani E; Accornero P; Baratta M
    Animal; 2017 Feb; 11(2):227-235. PubMed ID: 27406318
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Roles of lncRNAs and circRNAs in regulating skeletal muscle development.
    Chen R; Lei S; Jiang T; Zeng J; Zhou S; She Y
    Acta Physiol (Oxf); 2020 Feb; 228(2):e13356. PubMed ID: 31365949
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Temporal analysis of reciprocal miRNA-mRNA expression patterns predicts regulatory networks during differentiation in human skeletal muscle cells.
    Sjögren RJ; Egan B; Katayama M; Zierath JR; Krook A
    Physiol Genomics; 2015 Mar; 47(3):45-57. PubMed ID: 25547110
    [TBL] [Abstract][Full Text] [Related]  

  • 32. MicroRNA expression profiles differ between primary myofiber of lean and obese pig breeds.
    He D; Zou T; Gai X; Ma J; Li M; Huang Z; Chen D
    PLoS One; 2017; 12(7):e0181897. PubMed ID: 28759650
    [TBL] [Abstract][Full Text] [Related]  

  • 33. MiRNAs and Muscle Regeneration: Therapeutic Targets in Duchenne Muscular Dystrophy.
    Aránega AE; Lozano-Velasco E; Rodriguez-Outeiriño L; Ramírez de Acuña F; Franco D; Hernández-Torres F
    Int J Mol Sci; 2021 Apr; 22(8):. PubMed ID: 33921834
    [No Abstract]   [Full Text] [Related]  

  • 34. Identification and bioinformatics analysis of miRNAs involved in bovine skeletal muscle satellite cell myogenic differentiation.
    Wang YM; Ding XB; Dai Y; Liu XF; Guo H; Zhang Y
    Mol Cell Biochem; 2015 Jun; 404(1-2):113-22. PubMed ID: 25732542
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Epigenetic regulation of skeletal myogenesis.
    Saccone V; Puri PL
    Organogenesis; 2010; 6(1):48-53. PubMed ID: 20592865
    [TBL] [Abstract][Full Text] [Related]  

  • 36. microRNA-133: expression, function and therapeutic potential in muscle diseases and cancer.
    Yu H; Lu Y; Li Z; Wang Q
    Curr Drug Targets; 2014; 15(9):817-28. PubMed ID: 24975488
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Systematic transcriptome-wide analysis of mRNA-miRNA interactions reveals the involvement of miR-142-5p and its target (FOXO3) in skeletal muscle growth in chickens.
    Li Z; Abdalla BA; Zheng M; He X; Cai B; Han P; Ouyang H; Chen B; Nie Q; Zhang X
    Mol Genet Genomics; 2018 Feb; 293(1):69-80. PubMed ID: 28866851
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification and characteristics of muscle growth-related microRNA in the Pacific abalone, Haliotis discus hannai.
    Huang J; Luo X; Huang M; Liu G; You W; Ke C
    BMC Genomics; 2018 Dec; 19(1):915. PubMed ID: 30545311
    [TBL] [Abstract][Full Text] [Related]  

  • 39. miRNAs regulate acute transcriptional changes in broiler embryos in response to modification of incubation temperature.
    Naraballobh W; Trakooljul N; Murani E; Krischek C; Janisch S; Wicke M; Ponsuksili S; Wimmers K
    Sci Rep; 2018 Jul; 8(1):11371. PubMed ID: 30054505
    [TBL] [Abstract][Full Text] [Related]  

  • 40. MicroRNAs: novel regulators in cardiac development and disease.
    Thum T; Catalucci D; Bauersachs J
    Cardiovasc Res; 2008 Sep; 79(4):562-70. PubMed ID: 18511432
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.