These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 19448406)

  • 41. Functional Analysis of MicroRNAs in Skeletal Muscle.
    Oikawa S; Akimoto T
    Methods Mol Biol; 2023; 2640():339-349. PubMed ID: 36995606
    [TBL] [Abstract][Full Text] [Related]  

  • 42. MicroRNA-206: the skeletal muscle-specific myomiR.
    McCarthy JJ
    Biochim Biophys Acta; 2008 Nov; 1779(11):682-91. PubMed ID: 18381085
    [TBL] [Abstract][Full Text] [Related]  

  • 43. MicroRNA expression patterns in post-natal mouse skeletal muscle development.
    Lamon S; Zacharewicz E; Butchart LC; Orellana L; Mikovic J; Grounds MD; Russell AP
    BMC Genomics; 2017 Jan; 18(1):52. PubMed ID: 28061746
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Identification and characterization of microRNAs expressed in chicken skeletal muscle.
    Andreote AP; Rosario MF; Ledur MC; Jorge EC; Sonstegard TS; Matukumalli L; Coutinho LL
    Genet Mol Res; 2014 Mar; 13(1):1465-79. PubMed ID: 24634245
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Interactome mapping reveals important pathways in skeletal muscle development of pigs.
    Cao J; Huang T; Li X; Zhao S
    Int J Mol Sci; 2014 Nov; 15(12):21788-802. PubMed ID: 25431924
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Key regulators of skeletal myogenesis].
    Kopantseva EE; Belyavsky AV
    Mol Biol (Mosk); 2016; 50(2):195-222. PubMed ID: 27239841
    [TBL] [Abstract][Full Text] [Related]  

  • 47. MicroRNA: basic mechanisms and transcriptional regulatory networks for cell fate determination.
    Fazi F; Nervi C
    Cardiovasc Res; 2008 Sep; 79(4):553-61. PubMed ID: 18539629
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effects of microRNAs on skeletal muscle development.
    Wang J; Yang LZ; Zhang JS; Gong JX; Wang YH; Zhang CL; Chen H; Fang XT
    Gene; 2018 Aug; 668():107-113. PubMed ID: 29775754
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Micro-RNAs and muscle differentiation].
    Naguibneva I; Polesskaya A; Ameyar-Zazoua M; Souidi M; Groisman R; Cuvellier S; Ait-Si-Ali S; Pritchard LL; Harel-Bellan A
    J Soc Biol; 2007; 201(4):367-76. PubMed ID: 18533097
    [TBL] [Abstract][Full Text] [Related]  

  • 50. An integrated analysis of mRNA and miRNA in skeletal muscle from myostatin-edited Meishan pigs.
    Xie S; Li X; Qian L; Cai C; Xiao G; Jiang S; Li B; Gao T; Cui W
    Genome; 2019 May; 62(5):305-315. PubMed ID: 30913397
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Non-Coding RNAs as Regulators of Myogenesis and Postexercise Muscle Regeneration.
    Archacka K; Ciemerych MA; Florkowska A; Romanczuk K
    Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34768999
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Sequencing and characterization of miRNAs and mRNAs from the longissimus dorsi of Xinjiang brown cattle and Kazakh cattle.
    Li N; Yu QL; Yan XM; Li HB; Zhang Y
    Gene; 2020 May; 741():144537. PubMed ID: 32156528
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Small but influential: the role of microRNAs on gene regulatory network and 3'UTR evolution.
    Zhang R; Su B
    J Genet Genomics; 2009 Jan; 36(1):1-6. PubMed ID: 19161940
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Critical role of miRNAs in mediating skeletal muscle atrophy (Review).
    Yu Y; Chu W; Chai J; Li X; Liu L; Ma L
    Mol Med Rep; 2016 Feb; 13(2):1470-4. PubMed ID: 26718425
    [TBL] [Abstract][Full Text] [Related]  

  • 55. MicroRNAs expression and their regulatory networks during mesenchymal stem cells differentiation toward osteoblasts.
    Vimalraj S; Selvamurugan N
    Int J Biol Macromol; 2014 May; 66():194-202. PubMed ID: 24560946
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Expression profiling and functional characterization of miR-192 throughout sheep skeletal muscle development.
    Zhao Q; Kang Y; Wang HY; Guan WJ; Li XC; Jiang L; He XH; Pu YB; Han JL; Ma YH; Zhao QJ
    Sci Rep; 2016 Jul; 6():30281. PubMed ID: 27452271
    [TBL] [Abstract][Full Text] [Related]  

  • 57. MicroRNAs and Physical Activity.
    Altana V; Geretto M; Pulliero A
    Microrna; 2015; 4(2):74-85. PubMed ID: 26268469
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The effects of age upon the expression of three miRNAs in muscle stem cells isolated from two different porcine skeletal muscles.
    Redshaw Z; Sweetman D; Loughna PT
    Differentiation; 2014; 88(4-5):117-23. PubMed ID: 25542334
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Regulatory Axis of miR-195/497 and HMGA1-Id3 Governs Muscle Cell Proliferation and Differentiation.
    Qiu H; Zhong J; Luo L; Tang Z; Liu N; Kang K; Li L; Gou D
    Int J Biol Sci; 2017; 13(2):157-166. PubMed ID: 28255268
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Role of miRNAs in muscle stem cell biology: proliferation, differentiation and death.
    Crippa S; Cassano M; Sampaolesi M
    Curr Pharm Des; 2012; 18(13):1718-29. PubMed ID: 22352753
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.