These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 19448429)

  • 1. From top to bottom: the two faces of HIPK2 for regulation of the hypoxic response.
    Calzado MA; De La Vega L; Munoz E; Schmitz ML
    Cell Cycle; 2009 Jun; 8(11):1659-64. PubMed ID: 19448429
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An inducible autoregulatory loop between HIPK2 and Siah2 at the apex of the hypoxic response.
    Calzado MA; de la Vega L; Möller A; Bowtell DD; Schmitz ML
    Nat Cell Biol; 2009 Jan; 11(1):85-91. PubMed ID: 19043406
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stabilization of HIPK2 by escape from proteasomal degradation mediated by the E3 ubiquitin ligase Siah1.
    Kim SY; Choi DW; Kim EA; Choi CY
    Cancer Lett; 2009 Jul; 279(2):177-84. PubMed ID: 19250734
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutual regulation between SIAH2 and DYRK2 controls hypoxic and genotoxic signaling pathways.
    Pérez M; García-Limones C; Zapico I; Marina A; Schmitz ML; Muñoz E; Calzado MA
    J Mol Cell Biol; 2012 Oct; 4(5):316-30. PubMed ID: 22878263
    [TBL] [Abstract][Full Text] [Related]  

  • 5. XAF1 directs apoptotic switch of p53 signaling through activation of HIPK2 and ZNF313.
    Lee MG; Han J; Jeong SI; Her NG; Lee JH; Ha TK; Kang MJ; Ryu BK; Chi SG
    Proc Natl Acad Sci U S A; 2014 Oct; 111(43):15532-7. PubMed ID: 25313037
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutual regulation between Polo-like kinase 3 and SIAH2 E3 ubiquitin ligase defines a regulatory network that fine-tunes the cellular response to hypoxia and nickel.
    Li C; Park S; Zhang X; Dai W; Xu D
    J Biol Chem; 2017 Jul; 292(27):11431-11444. PubMed ID: 28515325
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The SIAH1-HIPK2-p53ser46 Damage Response Pathway is Involved in Temozolomide-Induced Glioblastoma Cell Death.
    He Y; Roos WP; Wu Q; Hofmann TG; Kaina B
    Mol Cancer Res; 2019 May; 17(5):1129-1141. PubMed ID: 30796178
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of HIPK2 stability by ubiquitin ligase Siah-1 and checkpoint kinases ATM and ATR.
    Winter M; Sombroek D; Dauth I; Moehlenbrink J; Scheuermann K; Crone J; Hofmann TG
    Nat Cell Biol; 2008 Jul; 10(7):812-24. PubMed ID: 18536714
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hyperglycemia triggers HIPK2 protein degradation.
    Baldari S; Garufi A; Granato M; Cuomo L; Pistritto G; Cirone M; D'Orazi G
    Oncotarget; 2017 Jan; 8(1):1190-1203. PubMed ID: 27901482
    [TBL] [Abstract][Full Text] [Related]  

  • 10. HIPK2 sustains apoptotic response by phosphorylating Che-1/AATF and promoting its degradation.
    De Nicola F; Catena V; Rinaldo C; Bruno T; Iezzi S; Sorino C; Desantis A; Camerini S; Crescenzi M; Floridi A; Passananti C; Soddu S; Fanciulli M
    Cell Death Dis; 2014 Sep; 5(9):e1414. PubMed ID: 25210797
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Autoregulatory control of the p53 response by Siah-1L-mediated HIPK2 degradation.
    Calzado MA; de la Vega L; Muñoz E; Schmitz ML
    Biol Chem; 2009 Oct; 390(10):1079-83. PubMed ID: 19642869
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How cells switch HIPK2 on and off.
    Sombroek D; Hofmann TG
    Cell Death Differ; 2009 Feb; 16(2):187-94. PubMed ID: 18974774
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Zyxin is a critical regulator of the apoptotic HIPK2-p53 signaling axis.
    Crone J; Glas C; Schultheiss K; Moehlenbrink J; Krieghoff-Henning E; Hofmann TG
    Cancer Res; 2011 Mar; 71(6):2350-9. PubMed ID: 21248071
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Seven in absentia homolog 2 (Siah2) protein is a regulator of NF-E2-related factor 2 (Nrf2).
    Baba K; Morimoto H; Imaoka S
    J Biol Chem; 2013 Jun; 288(25):18393-405. PubMed ID: 23645672
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphorylation-dependent control of Pc2 SUMO E3 ligase activity by its substrate protein HIPK2.
    Roscic A; Möller A; Calzado MA; Renner F; Wimmer VC; Gresko E; Lüdi KS; Schmitz ML
    Mol Cell; 2006 Oct; 24(1):77-89. PubMed ID: 17018294
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hypoxia suppresses chemotherapeutic drug-induced p53 Serine 46 phosphorylation by triggering HIPK2 degradation.
    Moehlenbrink J; Bitomsky N; Hofmann TG
    Cancer Lett; 2010 Jun; 292(1):119-24. PubMed ID: 20018442
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polo-like kinase 3, hypoxic responses, and tumorigenesis.
    Xu D; Dai W; Li C
    Cell Cycle; 2017; 16(21):2032-2036. PubMed ID: 28857653
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PARP1 regulates the protein stability and proapoptotic function of HIPK2.
    Choi JR; Shin KS; Choi CY; Kang SJ
    Cell Death Dis; 2016 Oct; 7(10):e2438. PubMed ID: 27787517
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The CDC37-HSP90 chaperone complex co-translationally degrades the nascent kinase-dead mutant of HIPK2.
    Müller JP; Klempnauer KH
    FEBS Lett; 2021 Jun; 595(11):1559-1568. PubMed ID: 33786814
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ubiquitination and degradation of homeodomain-interacting protein kinase 2 by WD40 repeat/SOCS box protein WSB-1.
    Choi DW; Seo YM; Kim EA; Sung KS; Ahn JW; Park SJ; Lee SR; Choi CY
    J Biol Chem; 2008 Feb; 283(8):4682-9. PubMed ID: 18093972
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.