BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

310 related articles for article (PubMed ID: 19449859)

  • 21. Solution structure and backbone dynamics of the Cu(I) and apo forms of the second metal-binding domain of the Menkes protein ATP7A.
    Banci L; Bertini I; Del Conte R; D'Onofrio M; Rosato A
    Biochemistry; 2004 Mar; 43(12):3396-403. PubMed ID: 15035611
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Metal binding affinities of Arabidopsis zinc and copper transporters: selectivities match the relative, but not the absolute, affinities of their amino-terminal domains.
    Zimmermann M; Clarke O; Gulbis JM; Keizer DW; Jarvis RS; Cobbett CS; Hinds MG; Xiao Z; Wedd AG
    Biochemistry; 2009 Dec; 48(49):11640-54. PubMed ID: 19883117
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In silico modeling of the Menkes copper-translocating P-type ATPase 3rd metal binding domain predicts that phosphorylation regulates copper-binding.
    Veldhuis NA; Kuiper MJ; Dobson RC; Pearson RB; Camakaris J
    Biometals; 2011 Jun; 24(3):477-87. PubMed ID: 21258844
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Metallochaperone Atox1 transfers copper to the NH2-terminal domain of the Wilson's disease protein and regulates its catalytic activity.
    Walker JM; Tsivkovskii R; Lutsenko S
    J Biol Chem; 2002 Aug; 277(31):27953-9. PubMed ID: 12029094
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Independent evolution of heavy metal-associated domains in copper chaperones and copper-transporting atpases.
    Jordan IK; Natale DA; Koonin EV; Galperin MY
    J Mol Evol; 2001 Dec; 53(6):622-33. PubMed ID: 11677622
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Copper-dependent protein-protein interactions studied by yeast two-hybrid analysis.
    van Dongen EM; Klomp LW; Merkx M
    Biochem Biophys Res Commun; 2004 Oct; 323(3):789-95. PubMed ID: 15381069
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tuning of copper-loop flexibility in Bacillus subtilis CopZ copper chaperone: role of conserved residues.
    Rodriguez-Granillo A; Wittung-Stafshede P
    J Phys Chem B; 2009 Feb; 113(7):1919-32. PubMed ID: 19170606
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The N-terminal metal-binding site 2 of the Wilson's Disease Protein plays a key role in the transfer of copper from Atox1.
    Walker JM; Huster D; Ralle M; Morgan CT; Blackburn NJ; Lutsenko S
    J Biol Chem; 2004 Apr; 279(15):15376-84. PubMed ID: 14754885
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structure of human Wilson protein domains 5 and 6 and their interplay with domain 4 and the copper chaperone HAH1 in copper uptake.
    Achila D; Banci L; Bertini I; Bunce J; Ciofi-Baffoni S; Huffman DL
    Proc Natl Acad Sci U S A; 2006 Apr; 103(15):5729-34. PubMed ID: 16571664
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Kinetic analysis of the interaction of the copper chaperone Atox1 with the metal binding sites of the Menkes protein.
    Strausak D; Howie MK; Firth SD; Schlicksupp A; Pipkorn R; Multhaup G; Mercer JF
    J Biol Chem; 2003 Jun; 278(23):20821-7. PubMed ID: 12679332
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An NMR study of the interaction between the human copper(I) chaperone and the second and fifth metal-binding domains of the Menkes protein.
    Banci L; Bertini I; Ciofi-Baffoni S; Chasapis CT; Hadjiliadis N; Rosato A
    FEBS J; 2005 Feb; 272(3):865-71. PubMed ID: 15670166
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Impact of cofactor on stability of bacterial (CopZ) and human (Atox1) copper chaperones.
    Hussain F; Wittung-Stafshede P
    Biochim Biophys Acta; 2007 Oct; 1774(10):1316-22. PubMed ID: 17881304
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Solution structures of the reduced and Cu(I) bound forms of the first metal binding sequence of ATP7A associated with Menkes disease.
    DeSilva TM; Veglia G; Opella SJ
    Proteins; 2005 Dec; 61(4):1038-49. PubMed ID: 16211579
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biochemical basis of regulation of human copper-transporting ATPases.
    Lutsenko S; LeShane ES; Shinde U
    Arch Biochem Biophys; 2007 Jul; 463(2):134-48. PubMed ID: 17562324
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enthalpy-entropy compensation at play in human copper ion transfer.
    Niemiec MS; Dingeldein AP; Wittung-Stafshede P
    Sci Rep; 2015 May; 5():10518. PubMed ID: 26013029
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Atx1-like chaperones and their cognate P-type ATPases: copper-binding and transfer.
    Singleton C; Le Brun NE
    Biometals; 2007 Jun; 20(3-4):275-89. PubMed ID: 17225061
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Differential roles of Met10, Thr11, and Lys60 in structural dynamics of human copper chaperone Atox1.
    Rodriguez-Granillo A; Wittung-Stafshede P
    Biochemistry; 2009 Feb; 48(5):960-72. PubMed ID: 19146392
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The transport mechanism of bacterial Cu+-ATPases: distinct efflux rates adapted to different function.
    Raimunda D; González-Guerrero M; Leeber BW; Argüello JM
    Biometals; 2011 Jun; 24(3):467-75. PubMed ID: 21210186
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Solution structure of the N-terminal domain of a potential copper-translocating P-type ATPase from Bacillus subtilis in the apo and Cu(I) loaded states.
    Banci L; Bertini I; Ciofi-Baffoni S; D'Onofrio M; Gonnelli L; Marhuenda-Egea FC; Ruiz-Dueñas FJ
    J Mol Biol; 2002 Mar; 317(3):415-29. PubMed ID: 11922674
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification of the "missing domain" of the rat copper-transporting ATPase, atp7b: insight into the structural and metal binding characteristics of its N-terminal copper-binding domain.
    Tsay MJ; Fatemi N; Narindrasorasak S; Forbes JR; Sarkar B
    Biochim Biophys Acta; 2004 Jan; 1688(1):78-85. PubMed ID: 14732483
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.