BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

475 related articles for article (PubMed ID: 19449916)

  • 1. A diabatic three-state representation of photoisomerization in the green fluorescent protein chromophore.
    Olsen S; McKenzie RH
    J Chem Phys; 2009 May; 130(18):184302. PubMed ID: 19449916
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bond selection in the photoisomerization reaction of anionic green fluorescent protein and kindling fluorescent protein chromophore models.
    Olsen S; Smith SC
    J Am Chem Soc; 2008 Jul; 130(27):8677-89. PubMed ID: 18597428
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantum chemistry behind bioimaging: insights from ab initio studies of fluorescent proteins and their chromophores.
    Bravaya KB; Grigorenko BL; Nemukhin AV; Krylov AI
    Acc Chem Res; 2012 Feb; 45(2):265-75. PubMed ID: 21882809
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protonic gating of excited-state twisting and charge localization in GFP chromophores: a mechanistic hypothesis for reversible photoswitching.
    Olsen S; Lamothe K; Martínez TJ
    J Am Chem Soc; 2010 Feb; 132(4):1192-3. PubMed ID: 20067241
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photoisomerization of the green fluorescence protein chromophore and the meta- and para-amino analogues.
    Yang JS; Huang GJ; Liu YH; Peng SM
    Chem Commun (Camb); 2008 Mar; (11):1344-6. PubMed ID: 18389128
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of the protein matrix in green fluorescent protein fluorescence.
    Maddalo SL; Zimmer M
    Photochem Photobiol; 2006; 82(2):367-72. PubMed ID: 16613487
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular modeling of green fluorescent protein: structural effects of chromophore deprotonation.
    Patnaik SS; Trohalaki S; Pachter R
    Biopolymers; 2004 Dec; 75(6):441-52. PubMed ID: 15497152
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Origin, nature, and fate of the fluorescent state of the green fluorescent protein chromophore at the CASPT2//CASSCF resolution.
    Martin ME; Negri F; Olivucci M
    J Am Chem Soc; 2004 May; 126(17):5452-64. PubMed ID: 15113217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potential energy landscape of the photoinduced multiple proton-transfer process in the green fluorescent protein: classical molecular dynamics and multiconfigurational electronic structure calculations.
    Vendrell O; Gelabert R; Moreno M; Lluch JM
    J Am Chem Soc; 2006 Mar; 128(11):3564-74. PubMed ID: 16536529
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Radiationless decay of red fluorescent protein chromophore models via twisted intramolecular charge-transfer states.
    Olsen S; Smith SC
    J Am Chem Soc; 2007 Feb; 129(7):2054-65. PubMed ID: 17253685
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On photoabsorption of the neutral form of the green fluorescent protein chromophore.
    Topol I; Collins J; Polyakov I; Grigorenko B; Nemukhin A
    Biophys Chem; 2009 Nov; 145(1):1-6. PubMed ID: 19720446
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling photoabsorption of the asFP595 chromophore.
    Bravaya KB; Bochenkova AV; Granovsky AA; Savitsky AP; Nemukhin AV
    J Phys Chem A; 2008 Sep; 112(37):8804-10. PubMed ID: 18729441
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conical intersections, charge localization, and photoisomerization pathway selection in a minimal model of a degenerate monomethine dye.
    Olsen S; McKenzie RH
    J Chem Phys; 2009 Dec; 131(23):234306. PubMed ID: 20025328
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational prediction of absorbance maxima for a structurally diverse series of engineered green fluorescent protein chromophores.
    Timerghazin QK; Carlson HJ; Liang C; Campbell RE; Brown A
    J Phys Chem B; 2008 Feb; 112(8):2533-41. PubMed ID: 18247600
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Collapse and recovery of green fluorescent protein chromophore emission through topological effects.
    Tolbert LM; Baldridge A; Kowalik J; Solntsev KM
    Acc Chem Res; 2012 Feb; 45(2):171-81. PubMed ID: 21861536
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing the decay coordinate of the green fluorescent protein: arrest of cis-trans isomerization by the protein significantly narrows the fluorescence spectra.
    Stavrov SS; Solntsev KM; Tolbert LM; Huppert D
    J Am Chem Soc; 2006 Feb; 128(5):1540-6. PubMed ID: 16448124
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of protein environment on electronically excited and ionized states of the green fluorescent protein chromophore.
    Bravaya KB; Khrenova MG; Grigorenko BL; Nemukhin AV; Krylov AI
    J Phys Chem B; 2011 Jun; 115(25):8296-303. PubMed ID: 21591720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electronic excitations of green fluorescent proteins: protonation states of chromophore model compound in solutions.
    Xie D; Zeng J
    J Comput Chem; 2005 Nov; 26(14):1487-96. PubMed ID: 16092146
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanistic aspects of proton chain transfer in the green fluorescent protein. Part II. A comparison of minimal quantum chemical models.
    Wang S; Smith SC
    Phys Chem Chem Phys; 2007 Jan; 9(4):452-8. PubMed ID: 17216060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solvent effects on the vibrational activity and photodynamics of the green fluorescent protein chromophore: a quantum-chemical study.
    Altoe' P; Bernardi F; Garavelli M; Orlandi G; Negri F
    J Am Chem Soc; 2005 Mar; 127(11):3952-63. PubMed ID: 15771532
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.