These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 19449956)

  • 1. Simulating acceleration from stereophotogrammetry for medical device design.
    Tresadern PA; Thies SB; Kenney LP; Howard D; Smith C; Rigby J; Goulermas JY
    J Biomech Eng; 2009 Jun; 131(6):061002. PubMed ID: 19449956
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A method for deriving displacement data during cyclical movement using an inertial sensor.
    Pfau T; Witte TH; Wilson AM
    J Exp Biol; 2005 Jul; 208(Pt 13):2503-14. PubMed ID: 15961737
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inertially compensated force plate: a means for quantifying subject's ground reaction forces in non-inertial conditions.
    Pagnacco G; Silva A; Oggero E; Berme N
    Biomed Sci Instrum; 2000; 36():397-402. PubMed ID: 10834265
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inclination measurement of human movement using a 3-D accelerometer with autocalibration.
    Luinge HJ; Veltink PH
    IEEE Trans Neural Syst Rehabil Eng; 2004 Mar; 12(1):112-21. PubMed ID: 15068194
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Does centripetal acceleration affect trunk flexion monitoring by means of accelerometers?
    Giansanti D
    Physiol Meas; 2006 Oct; 27(10):999-1008. PubMed ID: 16951459
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation of upper-limb orientation based on accelerometer and gyroscope measurements.
    Hyde RA; Ketteringham LP; Neild SA; Jones RS
    IEEE Trans Biomed Eng; 2008 Feb; 55(2 Pt 1):746-54. PubMed ID: 18270013
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensing power transfer between the human body and the environment.
    Veltink PH; Kortier H; Schepers HM
    IEEE Trans Biomed Eng; 2009 Jun; 56(6):1711-8. PubMed ID: 19237335
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Is it feasible to reconstruct body segment 3-D position and orientation using accelerometric data?
    Giansanti D; Macellari V; Maccioni G; Cappozzo A
    IEEE Trans Biomed Eng; 2003 Apr; 50(4):476-83. PubMed ID: 12723059
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quaternion-based extended Kalman filter for determining orientation by inertial and magnetic sensing.
    Sabatini AM
    IEEE Trans Biomed Eng; 2006 Jul; 53(7):1346-56. PubMed ID: 16830938
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Compensation of magnetic disturbances improves inertial and magnetic sensing of human body segment orientation.
    Roetenberg D; Luinge HJ; Baten CT; Veltink PH
    IEEE Trans Neural Syst Rehabil Eng; 2005 Sep; 13(3):395-405. PubMed ID: 16200762
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of linear accelerations from three measurement systems during "reach & grasp".
    Thies SB; Tresadern P; Kenney L; Howard D; Goulermas JY; Smith C; Rigby J
    Med Eng Phys; 2007 Nov; 29(9):967-72. PubMed ID: 17126061
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Endpoint error in smoothing and differentiating raw kinematic data: an evaluation of four popular methods.
    Vint PF; Hinrichs RN
    J Biomech; 1996 Dec; 29(12):1637-42. PubMed ID: 8945665
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rotational accelerations stabilize leading edge vortices on revolving fly wings.
    Lentink D; Dickinson MH
    J Exp Biol; 2009 Aug; 212(Pt 16):2705-19. PubMed ID: 19648415
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Motor unit acceleration maps and interference mechanomyographic distribution.
    Farina D; Li X; Madeleine P
    J Biomech; 2008 Sep; 41(13):2843-9. PubMed ID: 18722620
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the application of photogrammetry to the fitting of jawbone-anchored bridges.
    Strid KG
    Swed Dent J Suppl; 1985; 28():93-105. PubMed ID: 3904067
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Joint kinematics estimate using wearable inertial and magnetic sensing modules.
    Picerno P; Cereatti A; Cappozzo A
    Gait Posture; 2008 Nov; 28(4):588-95. PubMed ID: 18502130
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetic distortion in motion labs, implications for validating inertial magnetic sensors.
    de Vries WH; Veeger HE; Baten CT; van der Helm FC
    Gait Posture; 2009 Jun; 29(4):535-41. PubMed ID: 19150239
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fractal analysis of acceleration signals from patients with CPPD, rheumatoid arthritis, and spondyloarthroparthy of the finger joint.
    Shah EN; Reddy NP; Rothschild BM
    Comput Methods Programs Biomed; 2005 Mar; 77(3):233-9. PubMed ID: 15721651
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ambulatory position and orientation tracking fusing magnetic and inertial sensing.
    Roetenberg D; Slycke PJ; Veltink PH
    IEEE Trans Biomed Eng; 2007 May; 54(5):883-90. PubMed ID: 17518285
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A magnetometer-based approach for studying human movements.
    Bonnet S; Héliot R
    IEEE Trans Biomed Eng; 2007 Jul; 54(7):1353-5. PubMed ID: 17605368
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.