These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 19450243)

  • 21. A multi-substrate approach for functional metagenomics-based screening for (hemi)cellulases in two wheat straw-degrading microbial consortia unveils novel thermoalkaliphilic enzymes.
    Maruthamuthu M; Jiménez DJ; Stevens P; van Elsas JD
    BMC Genomics; 2016 Jan; 17():86. PubMed ID: 26822785
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phylogeny, classification and metagenomic bioprospecting of microbial acetyl xylan esterases.
    Adesioye FA; Makhalanyane TP; Biely P; Cowan DA
    Enzyme Microb Technol; 2016 Nov; 93-94():79-91. PubMed ID: 27702488
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Marine Metagenome as A Resource for Novel Enzymes.
    Alma'abadi AD; Gojobori T; Mineta K
    Genomics Proteomics Bioinformatics; 2015 Oct; 13(5):290-5. PubMed ID: 26563467
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cellulases from Thermophiles Found by Metagenomics.
    Escuder-Rodríguez JJ; DeCastro ME; Cerdán ME; Rodríguez-Belmonte E; Becerra M; González-Siso MI
    Microorganisms; 2018 Jul; 6(3):. PubMed ID: 29996513
    [TBL] [Abstract][Full Text] [Related]  

  • 25. New Insights into the Function and Global Distribution of Polyethylene Terephthalate (PET)-Degrading Bacteria and Enzymes in Marine and Terrestrial Metagenomes.
    Danso D; Schmeisser C; Chow J; Zimmermann W; Wei R; Leggewie C; Li X; Hazen T; Streit WR
    Appl Environ Microbiol; 2018 Apr; 84(8):. PubMed ID: 29427431
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Targeted metagenomics: a high-resolution metagenomics approach for specific gene clusters in complex microbial communities.
    Suenaga H
    Environ Microbiol; 2012 Jan; 14(1):13-22. PubMed ID: 21366818
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparative analysis of sugarcane bagasse metagenome reveals unique and conserved biomass-degrading enzymes among lignocellulolytic microbial communities.
    Mhuantong W; Charoensawan V; Kanokratana P; Tangphatsornruang S; Champreda V
    Biotechnol Biofuels; 2015; 8():16. PubMed ID: 25709713
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Estimating the success of enzyme bioprospecting through metagenomics: current status and future trends.
    Ferrer M; Martínez-Martínez M; Bargiela R; Streit WR; Golyshina OV; Golyshin PN
    Microb Biotechnol; 2016 Jan; 9(1):22-34. PubMed ID: 26275154
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Exploring the bioprospecting and biotechnological potential of white-rot and anaerobic Neocallimastigomycota fungi: peptidases, esterases, and lignocellulolytic enzymes.
    da Silva RR; Pedezzi R; Souto TB
    Appl Microbiol Biotechnol; 2017 Apr; 101(8):3089-3101. PubMed ID: 28314873
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bioprospecting plant-associated microbiomes.
    Müller CA; Obermeier MM; Berg G
    J Biotechnol; 2016 Oct; 235():171-80. PubMed ID: 27015976
    [TBL] [Abstract][Full Text] [Related]  

  • 31. MinION™ nanopore sequencing of environmental metagenomes: a synthetic approach.
    Brown BL; Watson M; Minot SS; Rivera MC; Franklin RB
    Gigascience; 2017 Mar; 6(3):1-10. PubMed ID: 28327976
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Metagenomic analysis of the Rhinopithecus bieti fecal microbiome reveals a broad diversity of bacterial and glycoside hydrolase profiles related to lignocellulose degradation.
    Xu B; Xu W; Li J; Dai L; Xiong C; Tang X; Yang Y; Mu Y; Zhou J; Ding J; Wu Q; Huang Z
    BMC Genomics; 2015 Mar; 16(1):174. PubMed ID: 25887697
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comprehensive compositional analysis of plant cell walls (Lignocellulosic biomass) part I: lignin.
    Foster CE; Martin TM; Pauly M
    J Vis Exp; 2010 Mar; (37):. PubMed ID: 20224547
    [TBL] [Abstract][Full Text] [Related]  

  • 34. GASdb: a large-scale and comparative exploration database of glycosyl hydrolysis systems.
    Zhou F; Chen H; Xu Y
    BMC Microbiol; 2010 Mar; 10():69. PubMed ID: 20202206
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High Potential for Biomass-Degrading Enzymes Revealed by Hot Spring Metagenomics.
    Reichart NJ; Bowers RM; Woyke T; Hatzenpichler R
    Front Microbiol; 2021; 12():668238. PubMed ID: 33968004
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Metagenomic analysis of uncultured microorganisms and their enzymatic attributes.
    Bilal T; Malik B; Hakeem KR
    J Microbiol Methods; 2018 Dec; 155():65-69. PubMed ID: 30452938
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Metagenomic analysis of intestinal microbiomes in chickens.
    Kim T; Mundt E
    Methods Mol Biol; 2011; 733():185-94. PubMed ID: 21431771
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Analysis of bacterial xylose isomerase gene diversity using gene-targeted metagenomics.
    Nurdiani D; Ito M; Maruyama T; Terahara T; Mori T; Ugawa S; Takeyama H
    J Biosci Bioeng; 2015 Aug; 120(2):174-80. PubMed ID: 25656071
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Discovering novel hydrolases from hot environments.
    Wohlgemuth R; Littlechild J; Monti D; Schnorr K; van Rossum T; Siebers B; Menzel P; Kublanov IV; Rike AG; Skretas G; Szabo Z; Peng X; Young MJ
    Biotechnol Adv; 2018 Dec; 36(8):2077-2100. PubMed ID: 30266344
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.