BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 19450687)

  • 1. High-resolution mapping of the protein interaction network for the human transcription machinery and affinity purification of RNA polymerase II-associated complexes.
    Cloutier P; Al-Khoury R; Lavallée-Adam M; Faubert D; Jiang H; Poitras C; Bouchard A; Forget D; Blanchette M; Coulombe B
    Methods; 2009 Aug; 48(4):381-6. PubMed ID: 19450687
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New insights into the biogenesis of nuclear RNA polymerases?
    Cloutier P; Coulombe B
    Biochem Cell Biol; 2010 Apr; 88(2):211-21. PubMed ID: 20453924
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The protein interaction network of the human transcription machinery reveals a role for the conserved GTPase RPAP4/GPN1 and microtubule assembly in nuclear import and biogenesis of RNA polymerase II.
    Forget D; Lacombe AA; Cloutier P; Al-Khoury R; Bouchard A; Lavallée-Adam M; Faubert D; Jeronimo C; Blanchette M; Coulombe B
    Mol Cell Proteomics; 2010 Dec; 9(12):2827-39. PubMed ID: 20855544
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methods review: Mass spectrometry analysis of RNAPII complexes.
    Burriss KH; Mosley AL
    Methods; 2019 Apr; 159-160():105-114. PubMed ID: 30902665
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Systematic analysis of the protein interaction network for the human transcription machinery reveals the identity of the 7SK capping enzyme.
    Jeronimo C; Forget D; Bouchard A; Li Q; Chua G; Poitras C; Thérien C; Bergeron D; Bourassa S; Greenblatt J; Chabot B; Poirier GG; Hughes TR; Blanchette M; Price DH; Coulombe B
    Mol Cell; 2007 Jul; 27(2):262-274. PubMed ID: 17643375
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Npa3-Gpn3 cooperate to assemble RNA polymerase II and prevent clump of its subunits in the cytoplasm.
    Ma L; Xie D; Zhao X; Wang L; Hou L; Liu X; Li Z; Cheng H; Zhang J; Gao M; Zeng F
    Int J Biol Macromol; 2022 May; 206():837-848. PubMed ID: 35314265
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteomic analysis of mitotic RNA polymerase II reveals novel interactors and association with proteins dysfunctional in disease.
    Möller A; Xie SQ; Hosp F; Lang B; Phatnani HP; James S; Ramirez F; Collin GB; Naggert JK; Babu MM; Greenleaf AL; Selbach M; Pombo A
    Mol Cell Proteomics; 2012 Jun; 11(6):M111.011767. PubMed ID: 22199231
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A rapid purification method for human RNA polymerase II by two-step affinity chromatography.
    Hasegawa J; Endou M; Narita T; Yamada T; Yamaguchi Y; Wada T; Handa H
    J Biochem; 2003 Jan; 133(1):133-8. PubMed ID: 12761208
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The yeast RNA polymerase II-associated factor Iwr1p is involved in the basal and regulated transcription of specific genes.
    Peiró-Chova L; Estruch F
    J Biol Chem; 2009 Oct; 284(42):28958-67. PubMed ID: 19679657
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gpn2 and Rba50 Directly Participate in the Assembly of the Rpb3 Subcomplex in the Biogenesis of RNA Polymerase II.
    Zeng F; Hua Y; Liu X; Liu S; Lao K; Zhang Z; Kong D
    Mol Cell Biol; 2018 Jul; 38(13):. PubMed ID: 29661922
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro assembly and proteomic analysis of RNA polymerase II complexes.
    Joo YJ; Ficarro SB; Marto JA; Buratowski S
    Methods; 2019 Apr; 159-160():96-104. PubMed ID: 30844430
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RNA Polymerase II CTD phosphatase Rtr1 fine-tunes transcription termination.
    Victorino JF; Fox MJ; Smith-Kinnaman WR; Peck Justice SA; Burriss KH; Boyd AK; Zimmerly MA; Chan RR; Hunter GO; Liu Y; Mosley AL
    PLoS Genet; 2020 Mar; 16(3):e1008317. PubMed ID: 32187185
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intelligent Mixing of Proteomes for Elimination of False Positives in Affinity Purification-Mass Spectrometry.
    Eyckerman S; Impens F; Van Quickelberghe E; Samyn N; Vandemoortele G; De Sutter D; Tavernier J; Gevaert K
    J Proteome Res; 2016 Oct; 15(10):3929-3937. PubMed ID: 27640904
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The eukaryotic gene transcription machinery.
    Kornberg RD
    Biol Chem; 2001 Aug; 382(8):1103-7. PubMed ID: 11592390
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcription directed by human core promoters with a HomolD box sequence requires DDB1, RECQL and RNA polymerase II machinery.
    Contreras-Levicoy J; Moreira-Ramos S; Rojas DA; Urbina F; Maldonado E
    Gene; 2012 Sep; 505(2):318-23. PubMed ID: 22705827
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional coupling of transcription and splicing.
    Montes M; Becerra S; Sánchez-Álvarez M; Suñé C
    Gene; 2012 Jun; 501(2):104-17. PubMed ID: 22537677
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The study of macromolecular complexes by quantitative proteomics.
    Ranish JA; Yi EC; Leslie DM; Purvine SO; Goodlett DR; Eng J; Aebersold R
    Nat Genet; 2003 Mar; 33(3):349-55. PubMed ID: 12590263
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic phosphorylation patterns of RNA polymerase II CTD during transcription.
    Heidemann M; Hintermair C; Voß K; Eick D
    Biochim Biophys Acta; 2013 Jan; 1829(1):55-62. PubMed ID: 22982363
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The FCP1 phosphatase interacts with RNA polymerase II and with MEP50 a component of the methylosome complex involved in the assembly of snRNP.
    Licciardo P; Amente S; Ruggiero L; Monti M; Pucci P; Lania L; Majello B
    Nucleic Acids Res; 2003 Feb; 31(3):999-1005. PubMed ID: 12560496
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteomics studies of the interactome of RNA polymerase II C-terminal repeated domain.
    Pineda G; Shen Z; de Albuquerque CP; Reynoso E; Chen J; Tu CC; Tang W; Briggs S; Zhou H; Wang JY
    BMC Res Notes; 2015 Oct; 8():616. PubMed ID: 26515650
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.