BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 19450731)

  • 1. The enzymes of the 10-formyl-tetrahydrofolate synthetic pathway are found exclusively in the cytosol of the trypanosomatid parasite Leishmania major.
    Vickers TJ; Murta SM; Mandell MA; Beverley SM
    Mol Biochem Parasitol; 2009 Aug; 166(2):142-52. PubMed ID: 19450731
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Methylene tetrahydrofolate dehydrogenase/cyclohydrolase and the synthesis of 10-CHO-THF are essential in Leishmania major.
    Murta SM; Vickers TJ; Scott DA; Beverley SM
    Mol Microbiol; 2009 Mar; 71(6):1386-401. PubMed ID: 19183277
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of the mitochondrial glycine cleavage complex in the metabolism and virulence of the protozoan parasite Leishmania major.
    Scott DA; Hickerson SM; Vickers TJ; Beverley SM
    J Biol Chem; 2008 Jan; 283(1):155-165. PubMed ID: 17981801
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional characterization of stage-specific aminotransferases from trypanosomatids.
    Marciano D; Maugeri DA; Cazzulo JJ; Nowicki C
    Mol Biochem Parasitol; 2009 Aug; 166(2):172-82. PubMed ID: 19443056
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The crystal structure of Leishmania major N(5),N(10)-methylenetetrahydrofolate dehydrogenase/cyclohydrolase and assessment of a potential drug target.
    Eadsforth TC; Cameron S; Hunter WN
    Mol Biochem Parasitol; 2012 Feb; 181(2):178-85. PubMed ID: 22108435
    [TBL] [Abstract][Full Text] [Related]  

  • 6.
    Semini G; Paape D; Blume M; Sernee MF; Peres-Alonso D; Calvignac-Spencer S; Döllinger J; Jehle S; Saunders E; McConville MJ; Aebischer T
    mBio; 2020 Jun; 11(3):. PubMed ID: 32487758
    [No Abstract]   [Full Text] [Related]  

  • 7. Mitochondrial redox metabolism in trypanosomatids is independent of tryparedoxin activity.
    Castro H; Romao S; Carvalho S; Teixeira F; Sousa C; Tomás AM
    PLoS One; 2010 Sep; 5(9):e12607. PubMed ID: 20838623
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stage specific gene expression and cellular localization of two isoforms of the serine hydroxymethyltransferase in the protozoan parasite Leishmania.
    Gagnon D; Foucher A; Girard I; Ouellette M
    Mol Biochem Parasitol; 2006 Nov; 150(1):63-71. PubMed ID: 16876889
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inactivation of the cytosolic and mitochondrial serine hydroxymethyl transferase genes in Leishmania major.
    Roy G; Ouellette M
    Mol Biochem Parasitol; 2015 Dec; 204(2):106-110. PubMed ID: 26868981
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Site-directed mutagenesis of a highly conserved aspartate in the putative 10-formyl-tetrahydrofolate binding site of yeast C1-tetrahydrofolate synthase.
    Kirksey TJ; Appling DR
    Arch Biochem Biophys; 1996 Sep; 333(1):251-9. PubMed ID: 8806778
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intracellular location of the early steps of the isoprenoid biosynthetic pathway in the trypanosomatids Leishmania major and Trypanosoma brucei.
    Carrero-Lérida J; Pérez-Moreno G; Castillo-Acosta VM; Ruiz-Pérez LM; González-Pacanowska D
    Int J Parasitol; 2009 Feb; 39(3):307-14. PubMed ID: 18848949
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cellular Pharmacodynamics of a Novel Pyrrolo[3,2-
    Dekhne AS; Ning C; Nayeen MJ; Shah K; Kalpage H; Frühauf J; Wallace-Povirk A; O'Connor C; Hou Z; Kim S; Hüttemann M; Gangjee A; Matherly LH
    Mol Pharmacol; 2020 Jan; 97(1):9-22. PubMed ID: 31707355
    [TBL] [Abstract][Full Text] [Related]  

  • 13. C-terminal proteolysis of prenylated proteins in trypanosomatids and RNA interference of enzymes required for the post-translational processing pathway of farnesylated proteins.
    Gillespie JR; Yokoyama K; Lu K; Eastman RT; Bollinger JG; Van Voorhis WC; Gelb MH; Buckner FS
    Mol Biochem Parasitol; 2007 Jun; 153(2):115-24. PubMed ID: 17397944
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The LPG1 gene family of Leishmania major.
    Zhang K; Barron T; Turco SJ; Beverley SM
    Mol Biochem Parasitol; 2004 Jul; 136(1):11-23. PubMed ID: 15138063
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disruption of the Putative Ribosome-Binding Motif of a Scaffold Protein Impairs Cytochrome
    Cardenas D; Sylvester C; Cao B; Nation CS; Pizarro JC; Lu H; Guidry J; Wojcik EJ; Kelly BL
    mSphere; 2019 Mar; 4(2):. PubMed ID: 30842271
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetoplastid-specific histone variant functions are conserved in Leishmania major.
    Anderson BA; Wong IL; Baugh L; Ramasamy G; Myler PJ; Beverley SM
    Mol Biochem Parasitol; 2013 Oct; 191(2):53-7. PubMed ID: 24080031
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In silico prediction of the glycosomal enzymes of Leishmania major and trypanosomes.
    Opperdoes FR; Szikora JP
    Mol Biochem Parasitol; 2006 Jun; 147(2):193-206. PubMed ID: 16546274
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ATG5 is essential for ATG8-dependent autophagy and mitochondrial homeostasis in Leishmania major.
    Williams RA; Smith TK; Cull B; Mottram JC; Coombs GH
    PLoS Pathog; 2012; 8(5):e1002695. PubMed ID: 22615560
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oligopeptidase B deficient mutants of Leishmania major.
    Munday JC; McLuskey K; Brown E; Coombs GH; Mottram JC
    Mol Biochem Parasitol; 2011 Jan; 175(1):49-57. PubMed ID: 20883728
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Leishmania LABCG1 and LABCG2 transporters are involved in virulence and oxidative stress: functional linkage with autophagy.
    Manzano JI; Perea A; León-Guerrero D; Campos-Salinas J; Piacenza L; Castanys S; Gamarro F
    Parasit Vectors; 2017 May; 10(1):267. PubMed ID: 28558770
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.