BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 19451205)

  • 61. Biochemical characterization and molecular cloning of cardiac triadin.
    Guo W; Jorgensen AO; Jones LR; Campbell KP
    J Biol Chem; 1996 Jan; 271(1):458-65. PubMed ID: 8550602
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Reorganized stores and impaired calcium handling in skeletal muscle of mice lacking calsequestrin-1.
    Paolini C; Quarta M; Nori A; Boncompagni S; Canato M; Volpe P; Allen PD; Reggiani C; Protasi F
    J Physiol; 2007 Sep; 583(Pt 2):767-84. PubMed ID: 17627988
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Distinct regions of triadin are required for targeting and retention at the junctional domain of the sarcoplasmic reticulum.
    Rossi D; Bencini C; Maritati M; Benini F; Lorenzini S; Pierantozzi E; Scarcella AM; Paolini C; Protasi F; Sorrentino V
    Biochem J; 2014 Mar; 458(2):407-17. PubMed ID: 24325401
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Potential role of cardiac calsequestrin in the lethal arrhythmic effects of cocaine.
    Sanchez EJ; Hayes RP; Barr JT; Lewis KM; Webb BN; Subramanian AK; Nissen MS; Jones JP; Shelden EA; Sorg BA; Fill M; Schenk JO; Kang C
    Drug Alcohol Depend; 2013 Dec; 133(2):344-51. PubMed ID: 23876860
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Modulation of cytosolic and intra-sarcoplasmic reticulum calcium waves by calsequestrin in rat cardiac myocytes.
    Kubalova Z; Györke I; Terentyeva R; Viatchenko-Karpinski S; Terentyev D; Williams SC; Györke S
    J Physiol; 2004 Dec; 561(Pt 2):515-24. PubMed ID: 15486014
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Age-dependent biochemical and contractile properties in atrium of transgenic mice overexpressing junctin.
    Kirchhefer U; Baba HA; Hanske G; Jones LR; Kirchhof P; Schmitz W; Neumann J
    Am J Physiol Heart Circ Physiol; 2004 Nov; 287(5):H2216-25. PubMed ID: 15205169
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Dysregulated sarcoplasmic reticulum calcium release: potential pharmacological target in cardiac disease.
    Györke S; Carnes C
    Pharmacol Ther; 2008 Sep; 119(3):340-54. PubMed ID: 18675300
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Abnormal interactions of calsequestrin with the ryanodine receptor calcium release channel complex linked to exercise-induced sudden cardiac death.
    Terentyev D; Nori A; Santoro M; Viatchenko-Karpinski S; Kubalova Z; Gyorke I; Terentyeva R; Vedamoorthyrao S; Blom NA; Valle G; Napolitano C; Williams SC; Volpe P; Priori SG; Gyorke S
    Circ Res; 2006 May; 98(9):1151-8. PubMed ID: 16601229
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Absence of triadin, a protein of the calcium release complex, is responsible for cardiac arrhythmia with sudden death in human.
    Roux-Buisson N; Cacheux M; Fourest-Lieuvin A; Fauconnier J; Brocard J; Denjoy I; Durand P; Guicheney P; Kyndt F; Leenhardt A; Le Marec H; Lucet V; Mabo P; Probst V; Monnier N; Ray PF; Santoni E; Trémeaux P; Lacampagne A; Fauré J; Lunardi J; Marty I
    Hum Mol Genet; 2012 Jun; 21(12):2759-67. PubMed ID: 22422768
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Tail-anchored membrane protein SLMAP is a novel regulator of cardiac function at the sarcoplasmic reticulum.
    Nader M; Westendorp B; Hawari O; Salih M; Stewart AF; Leenen FH; Tuana BS
    Am J Physiol Heart Circ Physiol; 2012 Mar; 302(5):H1138-45. PubMed ID: 22180652
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Calsequestrin binds to monomeric and complexed forms of key calcium-handling proteins in native sarcoplasmic reticulum membranes from rabbit skeletal muscle.
    Glover L; Culligan K; Cala S; Mulvey C; Ohlendieck K
    Biochim Biophys Acta; 2001 Dec; 1515(2):120-32. PubMed ID: 11718668
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Junctin and calsequestrin overexpression in cardiac muscle: the role of junctin and the synthetic and delivery pathways for the two proteins.
    Tijskens P; Jones LR; Franzini-Armstrong C
    J Mol Cell Cardiol; 2003 Aug; 35(8):961-74. PubMed ID: 12878483
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Calsequestrin 2 deletion shortens the refractoriness of Ca²⁺ release and reduces rate-dependent Ca²⁺-alternans in intact mouse hearts.
    Kornyeyev D; Petrosky AD; Zepeda B; Ferreiro M; Knollmann B; Escobar AL
    J Mol Cell Cardiol; 2012 Jan; 52(1):21-31. PubMed ID: 21983287
    [TBL] [Abstract][Full Text] [Related]  

  • 74. The cardiac ryanodine receptor luminal Ca2+ sensor governs Ca2+ waves, ventricular tachyarrhythmias and cardiac hypertrophy in calsequestrin-null mice.
    Zhang J; Chen B; Zhong X; Mi T; Guo A; Zhou Q; Tan Z; Wu G; Chen AW; Fill M; Song LS; Chen SR
    Biochem J; 2014 Jul; 461(1):99-106. PubMed ID: 24758151
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Abnormal calcium signaling and sudden cardiac death associated with mutation of calsequestrin.
    Viatchenko-Karpinski S; Terentyev D; Györke I; Terentyeva R; Volpe P; Priori SG; Napolitano C; Nori A; Williams SC; Györke S
    Circ Res; 2004 Mar; 94(4):471-7. PubMed ID: 14715535
    [TBL] [Abstract][Full Text] [Related]  

  • 76. On the role of junctin in cardiac Ca2+ handling, contractility, and heart failure.
    Gergs U; Berndt T; Buskase J; Jones LR; Kirchhefer U; Müller FU; Schlüter KD; Schmitz W; Neumann J
    Am J Physiol Heart Circ Physiol; 2007 Jul; 293(1):H728-34. PubMed ID: 17400717
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Immunogold-labeled L-type calcium channels are clustered in the surface plasma membrane overlying junctional sarcoplasmic reticulum in guinea-pig myocytes-implications for excitation-contraction coupling in cardiac muscle.
    Gathercole DV; Colling DJ; Skepper JN; Takagishi Y; Levi AJ; Severs NJ
    J Mol Cell Cardiol; 2000 Nov; 32(11):1981-94. PubMed ID: 11040103
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Intra-sarcoplasmic reticulum Ca2+ oscillations are driven by dynamic regulation of ryanodine receptor function by luminal Ca2+ in cardiomyocytes.
    Stevens SC; Terentyev D; Kalyanasundaram A; Periasamy M; Györke S
    J Physiol; 2009 Oct; 587(Pt 20):4863-72. PubMed ID: 19703963
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Dual regulation of the skeletal muscle ryanodine receptor by triadin and calsequestrin.
    Ohkura M; Furukawa K; Fujimori H; Kuruma A; Kawano S; Hiraoka M; Kuniyasu A; Nakayama H; Ohizumi Y
    Biochemistry; 1998 Sep; 37(37):12987-93. PubMed ID: 9737879
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Inefficient glycosylation leads to high steady-state levels of actively degrading cardiac triadin-1.
    Milstein ML; McFarland TP; Marsh JD; Cala SE
    J Biol Chem; 2008 Jan; 283(4):1929-35. PubMed ID: 18025088
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.