These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 19451686)

  • 1. Tunable synthesis of indium oxide octahedra, nanowires and tubular nanoarrow structures under oxidizing and reducing ambients.
    Kumar M; Singh VN; Mehta BR; Singh JP
    Nanotechnology; 2009 Jun; 20(23):235608. PubMed ID: 19451686
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The temperature-controlled growth of In2O3 nanowires, nanotowers and ultra-long layered nanorods.
    Singh N; Zhang T; Lee PS
    Nanotechnology; 2009 May; 20(19):195605. PubMed ID: 19420644
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The synthesis and growth mechanism of bamboo-like In2O3 nanowires.
    Jeong JS; Lee JY
    Nanotechnology; 2010 Oct; 21(40):405601. PubMed ID: 20823497
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasma-enhanced low temperature growth of silicon nanowires and hierarchical structures by using tin and indium catalysts.
    Yu L; O'Donnell B; Alet PJ; Conesa-Boj S; Peiró F; Arbiol J; Cabarrocas PR
    Nanotechnology; 2009 Jun; 20(22):225604. PubMed ID: 19436096
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetics-driven growth of orthogonally branched single-crystalline magnesium oxide nanostructures.
    Hao Y; Meng G; Ye C; Zhang X; Zhang L
    J Phys Chem B; 2005 Jun; 109(22):11204-8. PubMed ID: 16852367
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single crystalline and core-shell indium-catalyzed germanium nanowires-a systematic thermal CVD growth study.
    Xiang Y; Cao L; Conesa-Boj S; Estrade S; Arbiol J; Peiro F; Heiss M; Zardo I; Morante JR; Brongersma ML; Fontcuberta I Morral A
    Nanotechnology; 2009 Jun; 20(24):245608. PubMed ID: 19471084
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phase-controlled growth of metastable Fe5Si3 nanowires by a vapor transport method.
    Varadwaj KS; Seo K; In J; Mohanty P; Park J; Kim B
    J Am Chem Soc; 2007 Jul; 129(27):8594-9. PubMed ID: 17567133
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vapor-solid growth of Sn nanowires: growth mechanism and superconductivity.
    Hsu YJ; Lu SY
    J Phys Chem B; 2005 Mar; 109(10):4398-403. PubMed ID: 16851508
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of preferential indium nucleation on electrical conductivity of vapor-liquid-solid grown indium-tin oxide nanowires.
    Meng G; Yanagida T; Nagashima K; Yoshida H; Kanai M; Klamchuen A; Zhuge F; He Y; Rahong S; Fang X; Takeda S; Kawai T
    J Am Chem Soc; 2013 May; 135(18):7033-8. PubMed ID: 23581597
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low-temperature vapour-liquid-solid (VLS) growth of vertically aligned silicon oxide nanowires using concurrent ion bombardment.
    Bettge M; MacLaren S; Burdin S; Wen JG; Abraham D; Petrov I; Sammann E
    Nanotechnology; 2009 Mar; 20(11):115607. PubMed ID: 19420447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vapor phase synthesis of tungsten nanowires.
    Vaddiraju S; Chandrasekaran H; Sunkara MK
    J Am Chem Soc; 2003 Sep; 125(36):10792-3. PubMed ID: 12952451
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of branched 'nanotrees' by controlled seeding of multiple branching events.
    Dick KA; Deppert K; Larsson MW; Mårtensson T; Seifert W; Wallenberg LR; Samuelson L
    Nat Mater; 2004 Jun; 3(6):380-4. PubMed ID: 15122221
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Zinc incorporation via the vapor-liquid-solid mechanism into InP nanowires.
    van Weert MH; Helman A; van den Einden W; Algra RE; Verheijen MA; Borgström MT; Immink G; Kelly JJ; Kouwenhoven LP; Bakkers EP
    J Am Chem Soc; 2009 Apr; 131(13):4578-9. PubMed ID: 19281234
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of the concentration and oxidation state of Sn on the structural and electrical properties of indium tin oxide nanowires.
    Park KS; Choi YJ; Kang JG; Sung YM; Park JG
    Nanotechnology; 2011 Jul; 22(28):285712. PubMed ID: 21659686
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Room-temperature chemical synthesis of shape-controlled indium nanoparticles.
    Chou NH; Ke X; Schiffer P; Schaak RE
    J Am Chem Soc; 2008 Jul; 130(26):8140-1. PubMed ID: 18540599
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-assembly of versatile tubular-like In(2)O(3) nanostructures.
    Zhong M; Zheng M; Ma L; Li Y
    Nanotechnology; 2007 Nov; 18(46):465605. PubMed ID: 21730485
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solution-liquid-solid growth of semiconductor nanowires.
    Wang F; Dong A; Sun J; Tang R; Yu H; Buhro WE
    Inorg Chem; 2006 Sep; 45(19):7511-21. PubMed ID: 16961336
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reactant-governing growth direction of indium nitride nanowires.
    Liu H; Shi L; Geng X; Su R; Cheng G; Xie S
    Nanotechnology; 2010 Jun; 21(24):245601. PubMed ID: 20484787
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electron microscopy investigation of gallium oxide micro/nanowire structures synthesized via vapor phase growth.
    Wang Y; Xu J; Wang RM; Yu DP
    Micron; 2004; 35(6):447-53. PubMed ID: 15120129
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Graphene-based multifunctional iron oxide nanosheets with tunable properties.
    Koo HY; Lee HJ; Go HA; Lee YB; Bae TS; Kim JK; Choi WS
    Chemistry; 2011 Jan; 17(4):1214-9. PubMed ID: 21243687
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.